
1/3

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Faculty of Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer science/ Engineer

1.7 Form of education Full time

1.8 Subject code 32.

2. Data about the subject

2.1 Subject name Functional programming

2.2 Course responsible/lecturer Conf. dr. ing. Radu Slavescu – Radu.Razvan.Slavescu@cs.utcluj.ro

2.3 Teachers in charge of seminars/
laboratory/ project

Ing. Istvan Csaszar
Ing. Bogdan Salau

2.4 Year of study III 2.5 Semester 1
2.6 Type of assessment (E - exam, C - colloquium, V -
verification)

E

2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DD

DI – Impusă, DOp – opțională, DFac – facultativă DI

3. Estimated total time

3.1 Number of hours per week 4 of which: Course 2 Seminars Laboratory 2 Project

3.2 Number of hours per semester 56 of which: Course 28 Seminars Laboratory 28 Project

3.3 Individual study:

(a) Manual, lecture material and notes, bibliography 18

(b) Supplementary study in the library, online and in the field 10

(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 10

(d) Tutoring 4

(e) Exams and tests 2

(f) Other activities:

3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 44

3.5 Total hours per semester (3.2+3.4) 100

3.6 Number of credit points 4

4. Pre-requisites (where appropriate)

4.1 Curriculum Data Structures and Algorithms Course

4.2 Competence This course assumes no prior knowledge of functional programming, but advises
at least one year of programming experience in a regular programming
language such as Java, C, C++.

5. Requirements (where appropriate)

5.1. For the course Basic notions of programming

5.2. For the applications Linux

6. Specific competence

6.1 Professional competences C2 Designing a software system in a functional manner
C2.1 Identifying and describing the software components of the system
C2.2 Explaining the role, interaction and functioning of each component
C2.3 Building software components of some computing systems using design
methods, languages, technologies and tools specific to Functional
Programming
C2.4 Implementing the software components

mailto:Radu.Razvan.Slavescu@cs.utcluj.ro

2/3

C2.5 Evaluating the functional and non-functional characteristics of the
computing systems using specific metrics

6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective Increasing the ability to develop more correct and concise code via the
functional paradigm (immutability, formal proof of code correctness, easy
parellelization) and to understand its underpinning formalism (lambda
calculus)

7.2 Specific objectives Writing better code with the concepts introduced by functional programming:
high order functions, lazy evaluation, lambda calculus, infinite structures,
recursion as main way of performing iteration, formal proofs

8. Contents

8.1 Lectures Hours Teaching methods Notes

Introduction. Programming Paradigms 2

(Onsite/onlie) Slides,
Demos on the
whiteboard,
New examples
Quick individual work
(1 minute)

Basic concepts of programming in Haskell, ML: functions, constants,
primitive data types, recursion, tuples, infix operators, evaluation.

2

Basic concepts: local declarations, polymorphism. 2

Lists: list construction, basic operations on lists. 2

Lists: polymorphic equality. 2

Lists: list operators (generators, filters, list expressions). 2

Trees: alternative data, pattern matching, exceptions, binary trees
(list-tree conversions).

2

Trees: binary trees (binary search trees, AVL balanced trees,
examples (operations on sets)).

2

Trees: binary trees (examples (Huffman codes)), propositional
reasoner (example).

2

Higher-order functions: anonymous functions, partial application,
functions as data, data as functions, combinator functions,
functionals for lists (list operator style, style without lists).

2

Infinite data: lazy evaluation, unbounded objects, circular
structures.

2

Transformation and reasoning: structural induction, equivalence of
functions, structural induction on trees, induction on number of
nodes, general principle of induction.

2

Lambda calculus: Lambda notation, conversions, combinators. 2

Para-functional programming: basic language, mapped expressions,
eager expressions.

2

Bibliography

1. Haskell - A Purely Functional Language, http://www.haskell.org/
2. G. Hutton. Programming in Haskell, 2nd edition Cambridge University Press, 2016
3. M. Lipovaca. Learn You a Haskell for Great Good. No Starch Press, 2011.
4. Raul Rojas, A Tutorial Introduction to the Lambda Calculus, FU Berlin, 2015

8.2 Applications – Seminars/Laboratory/Project Hours Teaching methods Notes

Introduction in Functional Programming using Elm 2

(Onsite/online)
Exercises and problem
solving, implementing
functions on the
computer,
Tracing algorithms
Miniprojects

Elm Types 2

Lists and Recursivity 2

Higher order Functions in Elm 2

Miniapplication in Elm 2

Miniapplication in Elm 2

Introduction in Haskell and ML 2

ML Lists, Recursion,. 2

ML type checking 2

ML Trees 2

3/3

Haskell – High order functions 2

Haskell -Lazy evaluation, circular lists, infinite lists. 2

Lambda Calculus 2

Final evaluation (Programming in ML and Haskell). 2

Bibliography

1. www.haskell.org
2. elm-lang.org
3. M. Lipovaca. Learn You a Haskell for Great Good. No Starch Press, 2011.
4. A. Cumming A gentle introduction to ML (tutorial online)
*
Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional

associations and employers in the field

The content of the class is similar to the contents taught at other international universities. The students are
encouraged to identify elements of functional programming in the current practice of IT companies running at the
local level.

10. Evaluation

Activity type Assessment criteria Assessment methods
Weight in the

final grade

Course Understanding functional programming
elements, Class participation, Homework

(Onsite/online) Written
exam/Moodle test

50%

Seminar

Laboratory Quantity and quality of code in Elm, Haskell
and ML

(Onsite/online) Individual
assignments and mini-project

50%

Project

Minimum standard of performance:
Understanding and code writing for the following concepts; Recursion, High Order Functions, Pattern Matching.
Grade calculus: 50% laboratory + 50% final exam
Conditions for participating in the final exam: Laboratory ≥ 5
Conditions for promotion: Grade ≥ 5

Date of filling in: Titulari Titlu Prenume NUME Semnătura
 Course Conf. dr. ing. Radu Slavescu

 Applications Ing. Istvan Csaszar

 Ing. Bogdan Salau

Date of approval in the department

Head of department
Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean
Prof.dr.ing. Liviu Miclea

http://www.haskell.org/
http://www.soc.napier.ac.uk/course-notes/sml/manual.html

