SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	31.

2. Data about the subject

2.1 Subject name Structure of Computer Systems							
2.2 Course responsible/lecturer			Prof. d	Prof. dr. ing. Gheorghe Sebestyen – <u>Gheorghe.Sebestyen@cs.utcluj.ro</u>			
2.3 Teachers in charge of s laboratory/ project	semin	iars/	s/ Conf.dr.ing. Anca Hangan, S.I.dr.ing. Madalin Neagu				
2.4 Year of study	111	2.5 Semester		1	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E	
2.7 Subject estagen	DF — j	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară					
2.7 Subject category	DI – 1.	א – Impusă, DOp – opțională, DFac – facultativă					

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per	70	of which:	Course	28	Seminars		Laboratory	28	Project	14
semester										L
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography							20			
(b) Supplementary study in the library, online and in the field							17			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							15			
(d) Tutoring							0			
(e) Exams and tests							3			
(f) Other activities:							0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 55										
3.5 Total hours per semester (3.2-	+3.4)				125					
3.6 Number of credit points					5					

4. Pre-requisites (where appropriate)

4.1 Curriculum	Digital system design, Computer architecture
4.2 Competence	Understand and operate with basic concepts regarding computer system's hardware

5. Requirements (where appropriate)

5.1. For the course	
5.2. For the applications	

6. Specific competence

6.1 Professional competences	 C2 – Designing hardware, software and communication components (5 credits) C2.1 – Describing the structure and functioning of computational, communication and software components and systems C2.2 – Explaining the role, interaction and functioning of hardware, software
	C2.3 – Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data

	structures, and technologies C2.4 – Evaluating the functional and non-functional characteristics of the
	computing systems using specific metrics C2.5 – Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	The main goal of the course is to present in an accessible way advanced design methods and techniques used in today's microprocessors and computer systems
7.2 Specific objectives	To study: Methods and metrics for computer performance assessment Advanced CPU designs (pipelining, multicore, parallele and distributed computing) Memory hierarchies: cache memory, virtual memory, new DRAM technologies RISC architecture Parallel computers architectures – hardware issues and solutions

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. Computer Performance Parameters and Methods of Improvement	2		
Computer performance and optimality, Benchmarking	2		
The Arithmetical and Logical Unit (ALU)	2		
The Central Processing Unit (CPU) – MIPS architecture, pipeline,	·		
hazard cases	2		
The Central Processing Unit – advance techniques: Scoreboard	2		
method, Tomasulo's algorithm, Branch prediction techniques	Z	Lecture based on	
The Central Processing Unit – multi-core systems	2	slides, online or	
Microprocessors – basic components and advanced	2	onsite (depending on	
implementations	2	the medical	
Memory System – memory technologies (SRAM, DRAM) and design principles	2	conditions) tools used: MS	
Memory Hierarchies – cache and virtual memory	2	Teams, Moodle	
Interconnection Systems – serial and parallel synchronous and	2		
asynchronous buses, multipoint interconnections	2		
Parallel Computer Architectures - different levels of parallel	2		
execution	2	2	
RISC Architectures – principles and implementation examples	2		
Distributed Computing – GRID and Cloud Systems	2		
Technological Perspectives in Computer Architectures	2		
Bibliography			
1. Gorgan Dorian, Sebestyen Gheorghe, Structura Calculatoarelor,	Editura a	lbastra, Cluj-Napoca 200	5
2. Hennessy John, Patterson David, Computer architecture, a Quar	ntitative A	pproach, Ed. Elsevier, 20	07
3. Baruch, Z. F., Structure of Computer Systems, U.T.PRES, Cluj-Na	poca, 200	2, ISBN 973-8335-44-2.	
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Measuring the performance of computer systems with benchmarks	2		
CPU performance monitoring using the Time-Stamp Counter	2	Practical designs,	
register	Z	experiments and	
Programming elements in VHDL	2	results assessment,	
Design of ALU components	2	online or onsite	
FPGA Synthesis	2	(depending on the	
Introduction to using PicoBlaze microcontroller with the Nexys3	2	medical conditions)	
board	2	tools used: MS	
Implementation of a MIPS processor in VHDL - 1	2	Teams, Moodle	
Implementation of a MIPS processor in VHDL - 2	2		

Implementation of a pipelined MIPS processor in VHDL	2	
Memory design - 1	2	
Memory design - 2	2	
Advanced Hardware Design Techniques	2	
Design implementations on NEXYS 3 board	2	
Laboratory Colloquy	2	
Topics for Project Assignments: Implementation of arithmetic		
circuits; Design and implementation of processors and controllers;		
Signal Processing; Hardware implementation of DSP and image		
processing algorithms; Design of I/O interfaces.		
Bibliography		
Laboratory works at http://users.utcluj.ro/~ancapop/scs.html		

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade			
Course	Theoretical knowledge level	Written and/or oral exam, online or onsite (depending on the medical conditions); tools used: MS Teams, Moodle	60%			
Seminar						
Laboratory Project	Hardware Design skills	Practical evaluation, online or onsite (depending on the medical conditions) tools used: MS Teams, Moodle	40%			
Minimum standard of performance: Minimum 5 for the Course and for the Application assessment Grade calculus: 30% midterm + 20% laboratory + 20% project + 30% final exam Conditions for participating in the final exam: Laboratory ≥ 5, Project ≥ 5 Conditions for promotion: final exam ≥ 5						

Date of filling in:	Titulari Course	Titlu Prenume NUME Prof. dr. ing. Gheorghe Sebestyen	Semnătura
	Applications	Conf. Dr. Ing. Anca Hangan S.I. Dr. Ing. Madalin Neagu	

Date of approval in the department

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Miclea