
1/5

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Faculty of Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer science/ Engineer

1.7 Form of education Full time

1.8 Subject code 26.

2. Data about the subject

2.1 Subject name Operating Systems

2.2 Course responsible/lecturer Conf. dr. eng. Adrian Coleşa – adrian.colesa@cs.utcluj.ro

2.3 Teachers in charge of seminars/
laboratory/ project

Conf. dr. eng. Adrian Coleşa – adrian.colesa@cs.utcluj.ro
Eng. Istvan Szekely – iszekely@bitdefender.com
Eng. David Acs – dacs@bitdefender.com
Eng. Laslo Ciople – lciople@bitdefender.com
Eng. Lilla Nagy – lnagy@bitdefender.com

2.4 Year of study II 2.5 Semester 2
2.6 Type of assessment (E - exam, C - colloquium, V -
verification)

E

2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DD

DI – Impusă, DOp – opțională, DFac – facultativă DI

3. Estimated total time

3.1 Number of hours per week 4 of which: Course 2 Seminars Laboratory 2 Project

3.2 Number of hours per
semester

56 of which: Course 28 Seminars Laboratory 28 Project

3.3 Individual study:

(a) Manual, lecture material and notes, bibliography 25

(b) Supplementary study in the library, online and in the field 10

(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 28

(d) Tutoring 2

(e) Exams and tests 4

(f) Other activities: 0

3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 69

3.5 Total hours per semester (3.2+3.4) 125

3.6 Number of credit points 5

4. Pre-requisites (where appropriate)

4.1 Curriculum Computer Programming, Data Structures and Algorithms

4.2 Competence C programming

5. Requirements (where appropriate)

5.1. For the course Blackboard / Whiteboard, Beamer

5.2. For the applications Computers, Linux, Windows, Blackboard / Whiteboard

6. Specific competence

6.1 Professional competences C3: Problems solving using specific Computer Science and Computer
Engineering tools (3 credits)

 C3.1: Identifying classes of problems and solving methods that are specific
to computing systems

 C3.2: Using interdisciplinary knowledge, solution patterns and tools,

mailto:adrian.colesa@cs.utcluj.ro
mailto:iszekely@bitdefender.com
mailto:dacs@bitdefender.com
mailto:lciople@bitdefender.com
mailto:lnagy@bitdefender.com

2/5

making experiments and interpreting their results

 C3.3: Applying solution patterns using specific engineering tools and
methods

 C3.4: Evaluating, comparatively and experimentally, the available
alternative solutions for performance optimization

 C3.5: Developing and implementing informatic solutions for concrete
problems

C4: Improving the performances of the hardware, software and
communication systems (2 credits)

 C4.1: Identifying and describing the defining elements of the performances
of the hardware, software and communication systems

 C4.2: Explaining the interaction of the factors that determine the
performances of the hardware, software and communication systems

 C4.3: Applying the fundamental methods and principles for increasing the
performances of the hardware, software and communication systems

 C4.4: Choosing the criteria and evaluation methods of the performances of
the hardware, software and communication systems

 C4.5: Developing professional solutions for hardware, software and
communication systems based on performance optimization

6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective Provide the students a clear understanding of what an OS is, its role and
general functionality and the ability to use fundamental system calls of an OS.

7.2 Specific objectives Let the students:

1. Know and understand the OS specific terminology.

2. Understand the general structure and functionality of an OS.

3. Understand the specific functionality of the most important OS

components, like shell, process manager, file system, memory manager,

security manager.

4. Understand the functionality of main synchronization mechanisms and be

able to use them to solve real synchronization problems.

5. Be able to write C programs to use an OS’s (Linux and Windows) system

calls.

8. Contents

8.1 Lectures Hours Teaching methods Notes

Introduction and basic concepts. OS’s definition, role, evolution,
components, main concepts (file, process, system calls). Basic
hardware aspects: CPU, user and kernel mode, memory layers, I/O
devices. Basic OS structure.

2

(1) use beamer slides,
combined with
blackboard
illustration;

(2) interactions with
students: ask their
opinion relative to
the presented
subject;

(3) give each class a
short evaluation test;
let students discuss
and argue each other
their solution; give
them the good
solution and let them

The Shell (Command Interpreter). Definition, role, functionality,
simple and complex commands. Standard input and output
redirection.

2

File systems (1). User Perspective. File and directory concept from
the user point of view (definition, role, characteristics, operations).

2

File systems (2). Windows and Linux File Systems. Permission rights
and system calls.

2

File systems (3). Implementation aspects. Implementation
strategies overview, space management and related problems,
hard and symbolic links.

2

Process management. Process model: definition, role,
characteristics. Linux and Windows process management system
calls.

2

Thread management. Thread model: user vs. kernel threads, 2

3/5

implementation problems, usage, performance aspects. Basic
scheduling algorithms (FIFO, SJF, Priority-based). Linux and
Windows process thread system calls.

evaluate their own
one;

(4) propose 2-3
interesting study
cases of OSes to be
prepared and
presented by
students;

(5) students are
invited to collaborate
in research projects.

Process synchronization (1). Theoretical aspects. Context,
definition, synchronization mechanisms, techniques and problems
(locks, semaphores, monitors, mutual exclusion, starvation,
deadlock).

2

Process synchronization (2). Classical synchronization patterns:
producer/consumer, readers/writers, rendez-vous, barrier, dining
philosopher, sleeping barber. Similarities between different
synchronization mechanisms.

2

Inter-process communication. Pipe files, shared memory, message
queues, signals.

2

Memory management (1). Context, definition, binding, basic
techniques, space management, addresses translation, swapping.

2

Memory management (2). Paging and segmentation. 2

I/O Devices Management. Principles, disks, clocks, character-
oriented terminals.

2

Security aspects. Security policies and mechanisms. Basic
program's vulnerabilities (buffer overflow).

2

Bibliography

1. Andrew Tanenbaum. Modern Operating System, 2
nd

 Edition, Prentice-Hall, 2005, ISBN 0-13-092641-8.
2. A. Silberschatz, P. Galvin, G. Gagne, Operating Systems Concepts, 8th Edition, Wiley, 2010
3. Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, online available at

http://pages.cs.wisc.edu/~remzi/OSTEP/

8.2 Applications – Seminars/Laboratory/Project Hours Teaching methods Notes

Laboratory presentation: Purpose, contents, strategies,
requirements.
Get familiar with Linux OS: main characteristics, basic commands,
access rights.

2

(1) students are

presented a very brief

overview of the most

important and

difficult aspects of the

working subject;

(2) students are given

at the beginning of

each class a short

evaluation quiz;

(3) students are given

a hands-on tutorial to

practice with working

subject's aspects and

to solve problems

(4) students are given
challenging problems
for extra credit;

Linux batch scripts: basic Linux commands, command line
structure, scripts, command line parameters, variables, control flow
commands, functions.

2

Linux system calls to access data in files: basic system calls to store
and retrieve data to and from regular user files: open, read, write,
lseek, close.

2

Linux system calls for file and directory manipulation: system calls
to rename or remove a file, link a file to more directories, get
information about a file or directory, change permission rights and
listing a directory contents.

2

Linux system calls for process management: system calls for
creating a new process, terminating an existing process, waiting for
a child process to terminate, loading another executable into an
existing process etc.

2

Linux threads: Linux implementation of POSIX functions used to
create and manage threads: pthread_create, pthread_join,
pthread_exit etc.

2

Synchronization mechanisms (1): Linux semaphores. Linux system
calls to create and use semaphores: semget, semctl, semop.

2

Synchronization mechanisms (2): POSIX locks and condition
variables. Linux functions used to create and use POSIX locks and
condition variables: pthread_mutex_lock, pthread_mutex_unlock,
pthread_cond_wait, pthread_cond_signal.

2

Inter-process Communication Mechanisms (IPC): Linux named
(FIFO) and nameless pipes. System calls for managing and using
pipes: pipe and mkfifo.

2

Memory management: ELF executable file format. Virtual vs. 2

4/5

physical address space. Dynamically allocated memory.

Memory management: memory-mapped files, shared memory. 2

Security aspects: buffer overflow detection and correction. 2

Subject review and exam simulation. 2

Lab examination 2

Bibliography

1. Lecture slides and laboratory text and support at http://moodle.cs.utcluj.ro/

2. M. Mitchell, J. Oldham, A. Samuel, Advanced Linux Programming, New Riders Publishing, 2001
*
Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional

associations and employers in the field

OS knowledge is a fundamental requirement in the CS field. We follow the ACM curricula guide. We also consult
relevant IT companies about their practical expectations regarding OS knowledge and adapt accordingly our course
contents. In this sense, Linux and Windows are the most used OSes. Usually the teachers in charge of lab classes are
former graduate students of our CS program with consistent experience in industry. They are permanently consulted
regarding the OS course curriculum and its applicability in real projects in industry.

10. Evaluation

Activity type Assessment criteria Assessment methods
Weight in the

final grade

Course Students must understand fundamental
OS concepts and be able to correctly
define them. They must also be able to
apply their knowledge to solve user-space
problems related to or dependent by an
OS.

Quiz tests during lecture classes.
Written or online examination
using platforms like Moodle and
Teams, with subjects requiring
students to apply the theoretical
learned OS related aspects to
give a solution to proposed
problem. In exceptional
situations (like those imposed by
government for self-isolation
and remote school activities),
the online examination could
also be taken by students from a
remote location.

0.67

Seminar

Laboratory Students must be able to develop C
programs that use different OS system
calls to solve practical, problems related
to or dependent by an OS.

Quiz tests during lab classes.
Lab assignments during
semester.
Final lab examination with
programming problems,
whose solution has to be
implemented in C and run on
computers.
In exceptional situations (like
those imposed by
government for self-isolation
and remote school activities),
the lab final examination
could also be taken by
students from a remote
location

0.33

Project

Minimum standard of performance
Students must attend minimum 9 lecture classes to be allowed to take the exam in the regular exam session. Students

must attend minimum 7 lecture classes to be allowed to take the exam in any re-examination sessions. Less than 7

http://moodle.cs.utcluj.ro/

5/5

attended lecture classes leads to the interdiction to take any course re-examination in the university year the course is

taught.

Students must attend minimum 12 lab classes to be allowed to take the exam in the regular exam session. Students

must attend minimum 10 lab classes to be allowed to take the exam in any re-examination sessions. Less than 10

attended lab classes leads to the interdiction to take any lab re-examination in the university year the course is taught.

Students are allowed to take the final course examination only after passing the lab examination.

Be able to define the fundamental OS principles and concepts, like process, thread, file, directory, lock, semaphore,

paging.

Be able to write C program to use fundamental system calls in Linux for working with files, processes, threads,
synchronization mechanisms and memory.

Date of filling in Responsible Title, first name, family name Signature

 Course Conf.dr.eng. Adrian Colesa

Applications

Conf.dr.eng. Adrian Colesa

 Eng. Istvan Szekely

 Eng. David Acs

 Eng. Laslo Ciople

 Eng. Lilla Nagy

Date of approval in the department

Head of department
Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean
Prof.dr.ing. Liviu Miclea

