SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	22.

2. Data about the subject

2.1 Subject name			Systen	ns Th	eory	
2.2 Course responsible/led	cturer	•	Conf.d	r.ing	. Paula Raica – <u>Paula.Raica@aut.utcluj.ro</u>	
2.3 Teachers in charge of slaboratory/ project	semin	ars/	Conf.d	r.ing.	. Paula Raica, Sl.dr.ing. Alexandru Codrean	
2.4 Year of study	П	2.5 Sem	ester		2.6 Type of assessment (E - exam, C - colloquium, V - verification)	Е
2.7 Cubicat astagam	DF – f	fundamen	tală, DD	– în d	domeniu, DS – de specialitate, DC – complementară	DD
2.7 Subject category	DI – II	mpusă, Di	Эр – орț	ionald	ă, DFac – facultativă	DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per	56	of which:	Course	28	Seminars		Laboratory	28	Draiost	
semester	30	or writeri.	Course	20	Seminars		Laboratory	20	Project	
3.3 Individual study:										
(a) Manual, lecture materia	I and n	otes, bibli	ography							20
(b) Supplementary study in	the lib	rary, onlir	e and in	the f	ield					1
(c) Preparation for seminar	s/labor	atory wor	ks, home	work	, reports, p	ortfo	lios, essays			20
(d) Tutoring										
(e) Exams and tests										3
(f) Other activities:										
(e) Exams and tests		(2.21.)	2(0))		1					3

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Mathematical Analysis_II (Integral calculus and differential equations, Linear algebra)
4.2 Competence	Differential equations, complex numbers, Laplace transform, linear algebra

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Reading and understanding of the lecture notes.

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science
	concepts (4 credits)
	C1.1 – Recognizing and describing concepts that are specific to the fields of
	calculability, complexity, programming paradigms, and modeling
	computational and communication systems
	C1.2 – Using specific theories and tools (algorithms, schemes, models,
	protocols, etc.) for explaining the structure and the functioning of hardware,

	software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the
	designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	The general objective of the course is to introduce the fundamental principles of linear system modelling, analysis and feedback control and to evaluate feedback control systems with desired behaviour.
7.2 Specific objectives	The specific objectives are to acquire the knowledge and techniques related to: - mathematical system modelling (differential equations, input-output representation as transfer functions, block diagrams, state space models) for simple applications - linear system analysis (assessment of stability and performance properties of linear systems) in time and frequency domains - design of feedback controllers such as PID, lead and lag compensators for linear systems using s-domain techniques, state-feedback design - linear sampled-data system representation and analysis

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction to systems theory and control engineering. Intoduction to system modeling. Linear approximation.	2		
Input/output models. System response. State-space models.	2		
Conversion between transfer function and state space. Block diagrams.	2		
Linear system analysis. 1 st and 2 nd order systems. Steady-state error.	2		In case of
Higher order systems. Dominant poles. Stability of linear continuous systems.	2	Lecture, visual	online teaching, the
System analysis using root locus.	2	presentations,	platform
Frequency response. Bode diagrams.	2	demonstrations	used is
Controller design. Lead-lag compensation.	2		Teams (O365 services of
System analysis. Applications. Midterm exam.	2		UTCN)
PID – the basic technique for feedback control.	2		OTCIV)
Controlability. Observability. State feedback.	2		
Sampled-data systems.	2		
Digital control systems	2		
Controller design – aplications. Sampled-data systems – applications.	2		

Bibliography

- 1. R. C. Dorf, R. Bishop, "Modern Control Systems", Addison-Wesley, 2004;
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall, 1990.
- 3. K. Dutton, S. Thompson, B. Barraclough, "The Art of Control Engineering", Addison-Wesley, 1997
- 4. William S. Levine (editor), "The Control Handbook", CRC Press and IEEE Press, 1996
- 5. Lecture notes available on on the course class at: http://moodle.cs. utcluj.ro or Teams/Files (Systems Theory team)

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to Matlab. Simulation of dynamical systems	4	Class discussion	In case of
Linear approximation of differential equations. Transfer functions. System response.	4	Class discussion, Supervised exercise	online teaching, the
Block diagram models. 1st and 2nd order system analysis. Steady-state error	4	solving using Matlab Individual student reports	platform used is MS
System stability. Root locus	4	Teports	Teams.

Frequency response. Bode diagrams	4
Lead-lag compensation. PID controllers	4
State feedback. Sampled-data systems.	4

Bibliography

- 1. Alexandru Codrean, Paula Raica, "Control Engineering Handbook", to be published 2021
- 2 Lecture notes and exercises available on the course class at: http://moodle.cs. utcluj.ro or Teams/Files (Systems Theory team)

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course content combines theoretical knowledge with applications and focuses on the formulation and solution of specific problems that may occur in various engineering fields. Application of the control theory concepts are specific to most of the engineering disciplines. The course level is introductory and the intent is to motivate and prepare students for further study in related areas and to conduct projects in real-life applications.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Ability to solve exercises related to linear system modeling and analysis Ability to solve exercises related to system design and analysis of sampled-data systems	Midterm exam – writen examination Final exam - writen examination	40% 60%
Laboratory	Answer simple questions from the topic of the lab applications	Lab tests (optional)	30% (optional, but may contribute to a higher grade)

In case of online teaching, the evaluation will be organized as a quiz and exercises to be solved on paper and sent as files. The platform used: Moodle.

Minimum standard of performance:

Solution of simple exercises applying the knowledge and techniques presented in the course.

40% Midterm grade + 60% Final grade + 30%Lab grade > 5

Date of filling in:			Signature
	Course	Conf.dr.ing. Paula Raica	
	Applications	Sl.dr.ing. Alexandru Codrean	
		Sharmig. Alexandra courcan	

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea