SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	17.

2. Data about the subject

2.1 Subject name Analog and digital circuits						
2.2 Course responsible/lee	cturer		Assoc.Prof.dr.eng. Bogdan Iancu - <u>Bogdan.Iancu@cs.utcluj.ro</u>			
2.3 Teachers in charge of s laboratory/ project	semin	ars/	Prof.dr.eng. Dădârlat Vasile Teodor – <u>Vasile.Dadarlat@cs.utcluj.ro</u> Assoc.Prof.eng. Peculea Adrian – <u>Adrian.Peculea@cs.utcluj.ro</u> Asist.drd.eng. Sorin Buzura- <u>Sorin.Buzura@cs.utcluj.ro</u>			
2.4 Year of study	П	2.5 Sem	ester	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		
DF – fundamer			ntală, DD) — în c	domeniu, DS – de specialitate, DC – complementară	DD
2.7 Subject category DI – Impusă, D		Op – opț	ionalà	ă, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per	56	of which:	Course	28	Seminars		Laboratory	28	Project	
semester	50	or which.	Course	20	Seminars		Laboratory	20	Project	
3.3 Individual study:										
(a) Manual, lecture materia	l and n	otes, bibli	ography							10
(b) Supplementary study in the library, online and in the field							12			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							14			
(d) Tutoring							2			
(e) Exams and tests							6			
(f) Other activities:						0				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 44										
3.5 Total hours per semester (3.2+3.4) 100										
3.6 Number of credit points 4										

4. Pre-requisites (where appropriate)

4.1 Curriculum	
4.2 Competence	Basic knowledge in Physics, Electronics, Mathematics

5. Requirements (where appropriate)

5.1. For the course	Multimedia means. Online: collaborative platforms (Teams, Moodle, etc); Onsite: blackboard, projector, computer
5.2. For the applications	Classroom, PC with internet access, specific software, test boards, multimeters, voltage sources, signal generators, oscilloscopes, Arduino compatible development kits. Online: PC with internet access, specific software, collaborative platforms (Teams, Moodle, etc)

6. Specific competence

6.1 Professional competences	C2: Designing hardware, software and communication components
	C2.1: Describing the structure and functioning of computational,
	communication and software components and systems

	C2.2: Explaining the role, interaction and functioning of hardware, software and communication components
	C2.3: Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies
	C2.4: Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
	C2.5: Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Teamwork, understanding of basic digital electronics principles The main objective is to provide specific information and to prepare students for projects using discrete electronic devices and analog and digital integrated circuits. Thus, ADC will offer students the capacity to analyse, design and implement electronic systems
7.2 Specific objectives	Each student able to understand the functionality for the main circuits from a motherboard Theoretical knowledge on discrete electronic devices Skills in designing and implementing devices using discrete electronic devices Theoretical knowledge on analog integrated circuits Skills in designing and implementing devices using analog integrated circuits Theoretical knowledge on digital integrated circuits Skills in designing and implementing devices using digital integrated circuits

8. Contents

ectures	Hours	Teaching methods	Notes
duction. Electrical signals, passive devices, linear circuits vior at elementary signals application.	2		
conductor devices (I). Semiconductor, Schottky, Zener and emitting diode.	2		
conductor devices (II). Bipolar and field effect transistor.	2		
ational amplifiers. Characteristics, circuits with operational fiers with negative feedback.	2		
ower supplies. Rectifiers, filters. Parametric, feedback ar rated voltage regulators. Oscillators. Positive feedbac ator circuits.			
rated logic circuit parameters. Static transfer characteristics, margins, fan-in and fan-out, propagation time, power ation.	2	Oral Presentations using multimedia means	
rated logic circuit families (I). TTL integrated logic circuits.	2	Q & A Interactive	
rated logic circuit families (II). NMOS, CMOS and HCT rated logic circuits.	2	teaching Online: collaborative platforms (Teams,	
uilding with logic circuits. Open collector and three state rated logic circuits, connecting circuits to buses, transfer een registers and three state logic.	2	Moodle, Skype, etc)	
ve feedback circuits (I). Schmitt trigger and flip-flop circuits.	2		
ve feedback circuits (II). Monostable and astable circuits.	2		
conductor memories. Volatile and non-volatile semiconducto ories.	^r 2		
erters. Sampling, signal quantization, analog to digital and I to analog converters.	2		
controllers. Architecture, memory addressing, interrupt and system, serial communication.	2		
l to analog converters. controllers. Architecture, memory addressing, interrupt and			

1. Vasile Teodor Dadarlat, Adrian Peculea, "Circuite analogice si numerice", Ed. U.T.PRES, Cluj-Napoca, 2006, ISBN

(10) 973-662-243-6 ISBN (13) 978-973-662-243-4.			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Electrical signals and liner circuits.	2		
Semiconductor, Schottky, Zener and light emitting diode.	2		
Bipolar and field effect transistor.	2	Practical exercises	
Circuits with passive and semiconductor devices.	2	Brief presentation of	
Circuits with operational amplifiers with negative feedback.	2	possible solutions	
Rectifiers, filters and regulators.	2	Self testing	
Oscillator circuits.	2	programmes. Q & A	
Bipolar integrated logic circuits.	2	Online: collaborative platforms (Teams,	
MOS integrated logic circuits.	2	Moodle, etc),	
Open collector integrated logic circuits.	2	simulation software,	
Three state integrated logic circuits.	2	Q&A	
Schmitt trigger circuits.	2		
Multivibrator circuits.	2		
Laboratory test	2		
Bibliography			

1. Slides for Analog an digital circuits courses + sets of problems and applications for individual study at http://ftp.utcluj.ro/pub/users/dadarlat/circ_analognumeric-calc

- 2. https://moodle.cs.utcluj.ro/
- 3. Adrian Peculea, Bogdan Iancu, Vasile Dadarlat, Sorin Buzura, "Analog and digital Circuits.Practical applications", ISBN 978-606-737-459-9, U.T. Press Cluj-Napoca, 2020

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course content is kept state of the art by using latest technologies and devices available on the market. The discipline is important for design using discrete electronic devices, and analog and digital integrated circuits. The content of the discipline was discussed with important actors in this field, both academic and industrial, from Romania, Europe and the USA. Discipline was evaluated and certified by ARACIS.

10. Evaluation

al grade
60%
40%

Grade calculus: 40% laboratory + 60% final exam / 30% midterm exam + 40% laboratory + 30% final exam Conditions for participating in the final exam: Laboratory \ge 5

Conditions for promotion: grade ≥ 5

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura	
	Course	Assoc.Prof.dr.eng. Bogdan lancu		
	Applications	Prof.dr.eng. Dădârlat Vasile Teodor Assoc.Prof. dr. eng. Adrian Peculea Asist.drd.eng. Sorin Buzura		
Date of approval in	the denartment	Head of department		
	the department	Prof.dr.ing. Rodica Potolea		

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Miclea