SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	11.

2. Data about the subject

2.1 Subject name			Digital Systems Design			
2.2 Course responsible/lee	cturer	-	Prof. dr. eng. Creţ Octavian Augustin – Octavian.Cret@cs.utcluj.ro			
2.3 Teachers in charge of seminars/		As.Drd	.Drd.Ing. Diana Irena Pop – <u>Diana.Pop@cs.utcluj.ro</u>			
		idi S/	ing. No	g. Noema Maier – <u>noema mnl@yahoo.com</u>		
			ing. Bo	ing. Bogdan Vlad Zirbo – <u>bogdanvladutzirbo@gmail.com</u>		
2.4 Year of study I 2.5 Ser		2 5 500	E Somostor		2.6 Type of assessment (E - exam, C - colloquium, V -	E
		2.5 Sem	ester	2	verification)	Ľ
2.7 Subject category DI – Impusă, D		ntală, DD – în domeniu, DS – de specialitate, DC – complementară		DD		
		Op – opț	p – opțională, DFac – facultativă			

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	3	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	70	of which:	Course	42	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture materia	l and n	otes, bibli	ography							25
(b) Supplementary study in	the lib	rary, onlir	e and in	the f	eld					17
(c) Preparation for seminar	s/labor	atory wor	ks, home	work	, reports, p	ortfo	lios, essays			17
(d) Tutoring						6				
(e) Exams and tests						9				
(f) Other activities:						0				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 80										
3.5 Total hours per semester (3.2-	+3.4)				150					
3.6 Number of credit points 6										

4. Pre-requisites (where appropriate)

4.1 Curriculum	Logic Design
4.2 Competence	At least one high level programming language (i.e. C or PASCAL)

5. Requirements (where appropriate)

5.1. For the course	A minimum of 75% course attendance rate is mandatory for being admitted to the final exam.					
5.2. For the applications	Preliminary preparation of summaries from the indicated bibliography (laboratory textbook)					

6. Specific competence

6.1 Professional competences	C2 – Designing hardware, software and communication components						
	C2.1 - Describing the structure and functioning of computational,						
	communication and software components and systems						
	C2.2 – Explaining the role, interaction and functioning of hardware, software						
	and communication components						

	C2.3 – Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data					
	structures, and technologies					
	C2.4 – Evaluating the functional and non-functional characteristics of the					
	computing systems using specific metrics					
	C2.5 – Implementing hardware, software and communication systems					
6.2 Cross competences	N/A					

7. Discipline objective (as results from the *key competences gained*)

7.1 General objective	• The main objective of this discipline is to give to the students the bases of Digital Systems Design, in order to make them able to analyze, design and implement any complex digital system.
7.2 Specific objectives	 To reach this goal, students will learn to: Apply Digital System Design principles and descriptive techniques; Understand various aspects of Automata Theory with applications in the field of Digital Systems Design; Describe any digital system in VHDL; Utilize programmable devices such as FPGAs and PLDs to implement digital systems.

8. Contents

N/A		
N/		

Bibliography

1. Digital Design Principles and Practices, John F. Wakerly, Prentice-Hall, 2000.

2. Automate programabile, Th. Borangiu, R. Dobrescu, Ed. Academiei, 1986.

3. Advanced Digital Logic Design Using VHDL, State Machines, and Synthesis for FPGA's, Sunggu Lee, Thomson-Engineering; 1 edition (April 25, 2005), ISBN 0534466028.

4. PowerPoint slides for VHDL and Automata Theory lectures + sets of problems for the individual study: http://users.utcluj.ro/~lucia/index.html

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to VHDL	2	Practical work on test	
Basic design units in VHDL	2	boards, FPGA boards,	
Signals, generics, constants, in VHDL	2	specialized software,	
Operators, data types in VHDL	2	blackboard presentations,	
Attributes in VHDL	2	supplemental	N/A
Sequential domain. Processes in VHDL	2	explanations and	
Sequential statements in VHDL	2	discussions	
Concurrent domain in VHDL	2	(face to face or using	
Concurrent statements in VHDL	2	TEAMS platform, if	

Sub-programs in VHDL	2	necessary)	
Testbenches in VHDL	2		
Standard and predefined packages in VHDL	2		
Mini-projects delivery	2		
Lab test	2		
Bibliography			

1. Limbajul VHDL, Îndrumător de laborator, Ediția a-3-a. O. Creț, L. Văcariu, Ed. U.T. Press, Cluj-Napoca, 2007.

2. PowerPoint slides for VHDL and Automata Theory lectures + sets of problems for the individual study: http://users.utcluj.ro/~lucia/index.html

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

• Since this discipline is a basic one in Computer Science, its content is "classic" but also modern because it familiarizes students with the modern principles of Logic Design (utilization of modern simulation and synthesis tools, FPGA and CPLD-based design etc.). Its contents have been discussed with major academia and industry actors from Romania, Europe and U.S.A. and it has been evaluated several times by Romanian Governmental Agencies like CNEAA and ARACIS.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Problems solving abilities	Written Exam	
	Presence, (Inter)activity	(face to face or using TEAMS	60%
		platform, if necessary)	
Homeworks	Problems solving abilities	Practical Evaluation	20%
		(face to face or using TEAMS	
		platform, if necessary)	
Laboratory	Problems solving abilities	Practical Evaluation (hands-on)	
	Presence, (Inter)activity	(face to face or using TEAMS	20%
		platform, if necessary)	
Minimum standar	d of performance:		
Modeling and solv	ving typical Digital Systems Design problems us	ing the domain-specific formal appa	ratus.

Grade calculus: 20% lab + 20% miniproject + 60% final exam

Conditions for participating in the final exam: Lab \geq 5, Project \geq 5

Conditions for promotion: final exam ≥ 5

For participating in the final written exam minimum of 80% course attendance rate is necessary.

Date of filling in:	Titulari	Titlu Prenume NUME Prof. dr. eng. Octavian Cret	Semnătura
	Course		
	Applications	As.drd.ing. Diana Pop Ing. Noema Maier Ing. Bogdan Vlad Zirbo	

Date of approval in the department

Head of department Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean Prof.dr.ing. Liviu Miclea