SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	6.

2. Data about the subject

2.1 Subject name			Physic	Physics				
2.2 Course responsible/led	cture	-	Prof.dr.fiz. Radu Fechete					
2.3 Teachers in charge of seminars/ Lect. Dr. Dumitrita Corpodean								
2.4 Year of study	I	2.5 Sem	ester	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)				
2.7 Subject category		DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară						
		DI – Impusă, DOp – opțională, DFac – facultativă						

3. Estimated total time

3.1 Number of hours per week	3	of which:	Course	2	Seminars		Laboratory	1	Project	
3.2 Number of hours per semester	42	of which:	Course	28	Seminars		Laboratory	14	Project	
3.3 Individual study:										
(a) Manual, lecture materia	l and n	otes, bibli	ography							16
(b) Supplementary study in the library, online and in the field						10				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14				
(d) Tutoring							10			
(e) Exams and tests						3				
(f) Other activities:						5				
3.4 Total hours of individual study	(suma	(3.3(a)3	3.3(f)))		58					
3.5 Total hours per semester (3.2-	+3.4)				100					
3.6 Number of credit points					4					

4. Pre-requisites (where appropriate)

4.1 Curriculum	Good knowledge in high school physics
	Good knowledge in high school mathematics
4.2 Competence	Some knowledge in operating computers (Word, Power Point, Excel, www).

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	N/A

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts
	C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication systems
	C1.2 - Using specific theories and tools (algorithms, schemes, models,

	 protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	 Introduction of the most important physical quantities that are encountered in automation engineering. Introduction of the main laws of physics that play a central role in automation engineering applications.
7.2 Specific objectives	 Understanding of the most important laws of classical mechanics Knowledge of the oscillatory and wave phenomena Knowledge of the sound characteristics and transfer phenomena Knowledge of the electrical, magnetically and electromagnetic phenomena. Knowledge of the quantum mechanical phenomena. The ability to document alone in a given scientific problem using the books library and the Internet. The ability to elaborate and to present a report on a given scientific problem The ability to represent graphically the physical quantities. The ability to use commercial computer programs for interpretation of the experimental data. The ability to solve a given physical problem and to express it in a mathematical form. The ability to work in a team for solving real physical problems

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
C1. Introduction in Physics. Fundamental and derivate physical	2		Taamaa
quantities and their measurement units. Basics of kinematics:	2		reams
C2. Elements of motion (reference system, trajectory, space).		Didactic discourse	Teams
Velocity. Linear motions with constant velocity. Acceleration.		exposure and explanation of	
Linear motion with constant acceleration.	2	curricular subjects,	
Kinematics: Curvilinear motions (trajectory, velocity and		narrative-story related to	
acceleration).		the physics history and	
C3. Circular motion (angle, circular velocity, circular acceleration,		association with real life	Teams
law of motion with uniform angular velocity, law of motion with	2	(heuristics and catechetic) in	
uniform angular acceleration). Relations between linear and	2	which the students are	
circular quantities. Specific measurement units.		involved.	
C4. Dynamics: 1 st , 2 nd and 3 rd principles of dynamics. Inertial		Demonstration of physical	Teams
mass. Force. Linear momentum. Mechanic work. Power. Energy	2	laws in mathematical form	
(kinetic, potential, total).		represents the	
C5. Momentum of force. Angular momentum. Conservations laws	2	physical phenomena	Teams
of: linear momentum, kinetically momentum, energy.	2	at reduced scale.	
C6. Oscillatory motion: Linearly harmonically oscillator. Dumped	2	Demonstration with actions	Teams
oscillations. Forced oscillations, resonance.	2	performed by students	
C7. Waves. Wave function. Differential equation, Characteristic	2	from problem the	Teams
phenomena: reflection, refraction, interference, diffraction.	2	significant data, to	

Standing waves.			observe, identify and		
C8. Acoustics: Definition. Sound sources. Fundamental sound and			classifyphysical laws and types of motions.		Teams
superior harmonics. Sounds quality. Closed chambers acoustics.					
sound reverberation, reverberation time.					
C9 Electricity Introduction Electric charge Coulombian Force					Teams
Electric Field, Electric Field intensity, Electric Flux, Gauss law	for	2			
the electric field. Electric field work.		2			
C10. Electric current Definition Electric current intensity Definition	ensity				Teams
of the electric current. Ohm's law Electrons in solids. Electric	cally	2			reams
conductibility. Elements of electric circuit	cany	2			
C11 Magnetism: Magnetic field Sources of the magnetic field	ld				Teams
Lerentz force	iu.	2			Teans
					T
C12. Magnetic flux. Gauss law for the magnetic field. Elemen	nt of	2			Teams
current. Magnetic force (Laplace force). Biot-Savart law.					
C13. Magnetic field produced by a liner conductor. Magnetic	c field				Teams
produced by a loop. Ampere's law. Electromagnetic inductio	n.	2			
Faraday's law.					
C14. Maxwell's equations (differential and integral forms).					Teams
Electromagnetic waves: Maxwell's equations without source	es,	2			
velocity, transversally, intensity, and range					
Bibliography					
In UTC-N library					
1. R. Fechete, Fundamental physics for engineers, course not	tes.				
2. E. Culea, S. Nicoara, Fundamentals of Physics, RISOPRINT,	Cluj-Na	boca 200	4		
3. R. Fechete, Elemente de Fizica pentru Ingineri, Ed. UTPres	s, 2008.				
4. I.Ardelean, Fizica pentru ingineri, Ed. UTPres, 2005.					
5. I. COTOIU, E. CUIEd, FIZICA I, EU. OT. PTESS, 1999. Multimodia toaching aide					
6 Microsoft Encarta Encyclonedia					
7. Encyclopedia Britannica.					
8.2 Applications – Seminars/Laboratory/Project	Hours	Teach	ing methods	Notes	
L1. Work Protection. The study of thermoelectrically	1	Heuri	istic discovery	OnSit	o/OnLino
effect.	±	In lab	oratory of some physical	UISI	e/OnLine
L2. Longitudinal and transverse standing waves.	1	phen	phenomena. OnSit		e/OnLine
L3. Optical spectroscopy. 1			roblematization OnSite,		e/OnLine
L4. The study of photoelectric effect.	1	(prob	lematize)	OnSit	e/OnLine
L5. The determination of the energy gap of a 1			presentations of laws and OnSite/C principles of general physics with OnSite/C		e/OnLine
L6. The study of Hall Effect.					e/OnLine
17. Polarizations of light		situat	tions from real	OnSit	e/OnLine
	1	life, a	nd situations from the		
Ribliography		Tutur	e work of students.		
1 R Fechete R Chelcea D Moldovan S Nicoara I	Coroiu	C Bade	a E Culea I Cosma N	Serh	an Fizica:

- 1. R. Fechete, R. Chelcea, D. Moldovan, S. Nicoara,
- Indrumator de laborator, UT. PRESS, Cluj-Napoca, ISBN 978-973-662-952-5, (2014).
- 2. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/ThermoelectricEffect/</u>
- 3. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/StandingWaves/</u>
- 4. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/AtomicSpectra/</u>
 5. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PhotoelectricEffect/</u>
- 5. <u>https://phys.utcluj.ro/resurse/Laboratoare/Laborat</u>
- 6. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/HallEffect/</u>
- 7. https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/EnergyGap/
- 8. <u>https://phys.utcluj.ro/resurse/Laboratoare/LabOnline/PolarizationOfLight/</u>
- 9. <u>http://www.phys.utcluj.ro/resurse/Facultati/Calculatoare/2020-2021/AnICalculatoareEng_2020-2021.html</u>

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Theoretical Knowledges accumulated at class, individual study	Teams' Quiz (16 questions; 5 answers/question)	70%
Seminar			
Laboratory	Practical knowledges (abilities) accumulated in TUCN Laboratory + Individual study (essays on a general Physics subject or practical)	Essay, Practical Presentation, PPT presentation, written Problems, Numeric simulations of physical processes. On Line Assessment	30%
Project			
Minimum standar	d of performance:		

2.75/10 points (2.75 mark + (2.75 student – 1 default = 1.5) total 4.5 rounded to 5) + all laboratories

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof.dr.fiz. Radu Fechete	
	Applications	Lect. Dr. Dumitrita Corpodean	
Date of approval in t	the department	Head of department	
		Prof.dr.ing. Rodica Potolea	
Date of approval in t	the Faculty Council	Dean	
• •		Prof.dr.ing. Liviu Miclea	