SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	42.

2. Data about the subject

2.1 Subject name			Intellig	Intelligent systems		
2.2 Course responsible/led	cturer	•	Prof. d	Prof. dr. eng. Leţia Ioan Alfred – Ioan.Alfred.Letia@cs.utcluj.ro		
2.3 Teachers in charge of slaboratory/ project	semin	ars/		Assoc.prof. dr. eng. Razvan Slăvescu – Razvan.Slavescu@cs.utcluj.ro Assoc.prof. dr. eng. Anca Marginean – Anca.Marginean@cs.utcluj.ro		
2.4 Year of study	Ш	2.5 Sem	ester	ester 2 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е
2.7 Cubicat astanam	DF – f	fundamen	ndamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DS
2.7 Subject category	DI – II	mpusă, D	ppusă, DOp – opțională, DFac – facultativă D			DI

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	Laboratory	28	Project	
3.3 Individual study:									
(a) Manual, lecture material	and n	otes, bibli	ography						18
(b) Supplementary study in the library, online and in the field						5			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						10			
(d) Tutoring						6			
(e) Exams and tests						5			
(f) Other activities:					0				
3.4 Total hours of individual study (suma	(3.3(a)3	3.3(f)))		44			•	

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	Logic Programming, Functional Programming
4.2 Competence	Fundamentals of Computer Programming

5. Requirements (where appropriate)

5.1. For the course	Projector, Computer
5.2. For the applications	Computers with Linux, Specific Software

6. Specific competence

6.1 Professional competences	C6 – Design of intelligent systems (4 credits)
	C6.1 – Describing the components of intelligent systems
	C6.2 - Usage of specific instruments of the domain for explaining and
	understanding the functioning of intelligent systems
	C6.3 – Application of principles and basic methods for the specification of
	solutions typical problems using intelligent systems
	C6.4 – Choosing criteria and methods for the evaluation of quality,
	performance and limits of intelligent systems
	C6.5 – Development and implementation of professional designs for intelligent

	systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Knowledge of representation and reasoning of fundamental problems of intelligent systems
7.2 Specific objectives	Fundamental methods for basic representations in intelligent systems: uncertainty, learning, communication

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction.	2		
Uncertainty: inference using full joint distributions, Bayes' rule and its use.	2	_	
Probabilistic Reasoning: semantics of Bayesian networks, efficient representation, exact inference, approximate.	2		
Probabilistic Reasoning over Time: hidden Markov models, dynamic Bayesian networks.	2		
Making Simple Decisions: utility functions, decision networks, value of information.	2		
Making Complex Decisions: value iteration, policy iteration, partially observable MDPs, game theory.	2	Slides, Algorithms, Quality of solutions,	
Learning from Observations: learning decision trees, ensemble learning.	2	Exceptions, Limits in the	
Knowledge in Learning: explanation-based, relevance information, inductive logic programming.	2	representation of the real world	
Statistical Learning Methods: hidden variables, instance-based, neural networks, kernel machines.	2		
Reinforcement Learning.	2		
Association analysis: frequent itemset generation, rule generation, compact representation of frequent itemsets, alternative methods of generating frequent itemsets, FP-growth algorithm.	2		
Communication: syntactic analysis, semantic interpretation.	2		
Perception, representation and action in multi-agent systems.	2		
Overview on Intelligent Systems: Present and Future.	2		

Bibliography

- 1. Artificial Intelligence: A Modern Approach: Russell, Norvig, Prentice Hall, 2002
- 2. Tan, Steinbach, Kumar: Data Mining: Association Analysis, 2004

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to the documentation for the assignment	2		
Studying the documentation for the assignment	2		
Studying the design of the tool	2		
Practicing the exercises provided in the archive	2		
Understanding the main parts of the software	2		
Running the system by tracing at high level	2	Diatform	
Mastering the running of the system and the examples provided	2	Platform, Documentation,	
Conceptual design of new examples	2	Testing, Examples,	
Code for the new examples	2	New examples	
Testing and debugging the new cases	2	Ivew examples	
Measuring the performance of the system	2		
Documenting the new scenarios	2		
Comparison of the differences between the cases developed and	2		
those provided			
Final evaluation of the exercises developed	2		
Bibliography			

1. Various Intelligent Systems Tools from the WWW.

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course outline represents the most known and used one in the world methods for intelligent systems, continuously assessed by the research community in the world regarding its influence and use in software technology.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Problems and theoretical concepts	Moodle + email	75%
Seminar			
Laboratory	Usage of specific tools on the examples developed and tested by the students	Moodle	25%
Project			

Minimum standard of performance:

Representation of knowledge and its use in solving specific intelligent systems problems using specific tools.

Grade calculus: 25% laborator + 75% examen final

Conditions for participating in the final exam: Laborator ≥ 5

Conditions for promotion: grade ≥ 5

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof. dr. eng. Leţia Ioan Alfred	
	Applications	Acces and dr and Dazuen Clausery	
		Assoc.prof. dr. eng. Razvan Slavescu	
		Assoc.prof. dr. eng. Anca Marginean	

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea