SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	4.

2. Data about the subject

2.1 Subject name			Logic Design			
2.2 Course responsible/lecturer		Prof. dr. eng. Octavian Creţ – Octavian.Cret@cs.utcluj.ro				
2.3 Teachers in charge of laboratory/ project	semir	nars/	Drd. ing. Diana Pop — <u>Diana.Pop@cs.utcluj.ro</u> ing. Noema Maier — <u>noema mnl@yahoo.com</u> ing. Bogdan Vlad Zirbo — bogdanvladutzirbo@gmail.com			
2.4 Year of study	1	2.5 Sem	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			E
2.7 Subject category		ntală, DD – în domeniu, DS – de specialitate, DC – complementară			DD	
		n – Impusă, DOp – opțională, DFac – facultativă			DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per	r.c	of which	Course	20	Cominore		Laboratory	20	Drainat	
semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture materia	al and r	otes, bibli	ography							25
(b) Supplementary study in the library, online and in the field							17			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							17			
(d) Tutoring								6		
(e) Exams and tests							9			
(f) Other activities:							0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69										
3.5 Total hours per semester (3.2+3.4)										
3.6 Number of credit points					5					

4. Pre-requisites (where appropriate)

4.1 Curriculum	• N/A
4.2 Competence	Mathematics (Algebra), Physics (electricity)

5. Requirements (where appropriate)

5.1. For the course	A minimum of 80% course attendance rate is mandatory for being admitted to the final exam.					
5.2. For the applications	Preliminary preparation of summaries from the indicated bibliography (laboratory textbook)					

6. Specific competence

C 1 Duefessional commetences	C1 Operating with hosis Mathematical Engineering and Computer Science						
6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science						
	concepts						
	C1.1 - Recognizing and describing concepts that are specific to the fields of						
	calculability, complexity, programming paradigms, and modeling						
	computational and communication systems						

	C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the
	designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

77 Biserpinie objective (as results in	om me ney competences games,		
7.1 General objective	 The main objective of this discipline is to give to the students the bases of Logic Design, in order to make them able to analyze, design and implement any digital system. 		
7.2 Specific objectives	To reach this goal, students will learn to:		
	 Analyze and synthesize combinational logic systems; 		
	 Analyze and synthesize synchronous and asynchronous sequential machines; 		
	 Apply digital system design principles and descriptive techniques; 		
	 Utilize programmable devices such as FPGAs and PLDs to implement digital systems; 		
	 Understand timing issues in digital systems and study these via digital circuit simulation. 		

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. Number systems and codes, errors	2		
Number representation systems. Binary arithmetic	2		
Boolean Algebra. Boolean functions. Logic gates. Digital systems and functions representation	2		
Methods for minimizing Boolean functions and systems of functions	2		
Combinational logic circuits (CLCs) analysis and design (synthesis). SSI and MSI CLCs.	2		
Methods for designing digital systems with SSI, MSI, LSI and VLSI circuits. Combinational Hazard.	2	Online presentations, discussions	
Sequential logic circuits. Latches and Flip-Flops.	2	(using TEAMS	
Flip-Flops applications: frequency dividers, counters	2	platform)	
Flip-Flops applications: data registers, converters, memories	2		
Methods for designing digital systems using Flip-Flops	2		
Methods for designing digital systems using memories, multiplexers, decoders, counters	2		
Methods for designing sequential synchronous systems	2		
Methods for designing digital systems using programmable devices (I)	2		
Methods for designing digital systems using programmable devices (II)	2		

Bibliography

- 1. Contemporary Logic Design, Randy H. Katz, Benjamin Cunnings / Addison Wesley Publishing Co., 1993.
- 2. Digital Design Principles and Practices, John F. Wakerly, Prentice-Hall, 2000.
- 3. FPGA-based System Design, Wayne Wolf, PRENTICE HALL Professional Technical Reference Upper Saddle River, NJ 07458 www.phptr.com ISBN: 0-13-142461-0.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Basic Logic Circuits	2		
ActiveHDL Schematic Editor and Simulator (I)	2		
ActiveHDL Schematic Editor and Simulator (II)	2	Practical work on test	

Combinational Logic Circuits (I)	2	boards, FPGA boards,	
Combinational Logic Circuits (II) – MSI circuits	2	specialized software,	
Combinational Logic Circuits (III) – Complex circuits	2	blackboard	
Synthesis of Combinatorial Logic Circuits using Programmable Logic	2	presentations,	
Devices	2	supplemental	
Flip-flops	2	explanations and	
Counters (I)	2	discussions	
Counters (II)	2		
Registers and Shift Registers	2		
The XILINX FPGA Family	2		
Synthesis of Sequential Logic Circuits using FPGA Devices	2		
Laboratory test	2		

Bibliography

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

• Since this discipline is a basic one in Computer Science, its content is "classic" but also modern because it familiarizes students with the modern principles of Logic Design (utilization of modern simulation and synthesis tools, FPGA and CPLD-based design etc.). Its contents have been discussed with major academia and industry actors from Romania, Europe and U.S.A. and it has been evaluated several times by Romanian Governmental Agencies like CNEAA and ARACIS.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Problems solving abilities Presence, (Inter)activity	Written Exam	70%
Seminar			
Laboratory	Problems solving abilities Presence, (Inter)activity	Written Exam	30%
Project			

Minimum standard of performance:

- Conditions for participating in the final Written exam: Applications grade ≥ 5 AND a minimum of 80% course attendance rate;
- Conditions for passing the exam: Written exam grade ≥ 5;
- Modeling and solving typical Logic Design problems using the domain-specific formal apparatus.

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof. dr. eng. Octavian Cret	
	Applications	As.drd.ing. Diana Pop	
		ing. Noema Maier	
		ing. Bogdan Vlad Zirbo	

Date of approval in the department	Head of department	
	Prof.dr.ing. Rodica Potolea	
Date of approval in the Faculty Council	Dean	
, ,	Prof.dr.ing. Liviu Miclea	

^{1.} Analiza şi sinteza dispozitivelor numerice, Îndrumător de laborator, Ediţia a-3-a, L. Văcariu, O. Creţ, A. Neţin, Ed. U.T. Press, Cluj-Napoca, 2009.

[.] Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.