
1/4

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Faculty of Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer science/ Engineer

1.7 Form of education Full time

1.8 Subject code 33.

2. Data about the subject

2.1 Subject name Software engineering

2.2 Course responsible/lecturer Prof. dr eng. Eneia Todoran – Eneia.Todoran@cs.utcluj.ro

2.3 Teachers in charge of seminars/
laboratory/ project

Assoc.prof. dr. Mitrea Paulina – Paulina.Mitrea@cs.utcluj.ro,
Assoc.prof. dr. eng. Mitrea Delia Delia.Mitrea@cs.utcluj.ro

2.4 Year of study III 2.5 Semester 1
2.6 Type of assessment (E - exam, C - colloquium, V -
verification)

E

2.7 Subject category
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară DD

DI – Impusă, DOp – opțională, DFac – facultativă DI

3. Estimated total time

3.1 Number of hours per week 4 of which: Course 2 Seminars Laboratory 1 Project 1

3.2 Number of hours per
semester

56 of which: Course 28 Seminars Laboratory 14 Project 14

3.3 Individual study:

(a) Manual, lecture material and notes, bibliography 20

(b) Supplementary study in the library, online and in the field 17

(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays 17

(d) Tutoring 5

(e) Exams and tests 10

(f) Other activities: 0

3.4 Total hours of individual study (suma (3.3(a)…3.3(f))) 69

3.5 Total hours per semester (3.2+3.4) 125

3.6 Number of credit points 5

4. Pre-requisites (where appropriate)

4.1 Curriculum Object Oriented Programming, Programming Techniques

4.2 Competence Competences acquired in the above disciplines

5. Requirements (where appropriate)

5.1. For the course Blackboard / whiteboard, internet, projector, computer

5.2. For the applications Computers, internet, specific software

6. Specific competence

6.1 Professional competences C3 - Problems solving using specific Computer Science and Computer
Engineering tools (2 credits)
C3.1 - Identifying classes of problems and solving methods that are specific to
computing systems
C3.2 - Using interdisciplinary knowledge, solution patterns and tools, making
experiments and interpreting their results
C3.3 - Applying solution patterns using specific engineering tools and mehods
C3.4 - Comparatively and experimentaly evaluation of the alternative solutions

mailto:Eneia.Todoran@cs.utcluj.ro
mailto:Paulina.Mitrea@cs.utcluj.ro
mailto:Delia.Mitrea@cs.utcluj.ro

2/4

for performance optimization
C3.5 - Developing and implementing informatic solutions for concrete
problems
C4 - Improving the performances of the hardware, software and
communication systems (1 credit)
C4.1 - Identifying and describing the defining performance elements of
hardware, software and communication systems
C4.2 - Explaining the interaction of the factors that determine the
performances of hardware, software and communication systems
C4.3 - Applying fundamental methods and principles for increasing
performance of hardware, software and communication systems
C4.4 - Choosing criteria and methods for performance evaluation of hardware,
software and communication systems
C4.5 - Developing performance based professional solutions for hardware,
software and communication systems
C5 - Designing, managing the lifetime cycle, integrating and ensuring the
integrity of hardware, software and communication systems (2 credits)
C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality,
security and the computing system’s interaction with the environment and the
human operator
C5.2 - Using interdisciplinary knowledge for adapting an information system to
application domain requirements
C5.3 - Using fundamental principles and methods for security, reliability and
usability assurance of computing systems
C5.4 - Adequate utilization of quality, safety and security standards in
information processing
C5.5 - Creating a project including the problem’s identification and analysis, its
design and development, also proving an understanding of the basic quality
requirements

6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective The overall objective of discipline consists in the study and application of
systematic, disciplined and quantifiable approaches in software systems
development

7.2 Specific objectives Study and application of software development processes

 Understanding the specific activities of software engineering

 Knowledge of software engineering models

 Knowledge of specific tools that can assist software engineers in the
specification, design and validation process

 Knowledge of methods for software modeling and performance analysis

 Application of processes, methods and tools in small to medium-sized
software projects

8. Contents

8.1 Lectures Hours Teaching methods Notes

Introduction and overview of the course 2

PowerPoint
presentations,
examples, questions,
discussion (using
Teams and Discord
for online interaction)

Software development paradigms: basic paradigms (‘waterfall’,
prototyping, reusable components, formal methods), evolutionary
paradigms (incremental development, spiral model, concurrent
engineering)

2

Modern processes: the unified process, agile methods and extreme
programming

2

Basic activities (specification, development, validation, evolution):
concepts, principles, processes

2

Developing requirements: domain analysis, techniques for
gathering requirements, capturing requirements as use cases

2

3/4

Formal specification: formal modeling and analysis, model
checking, tools in support of formal methods (PRISM)

2

Modeling with classes: UML class and object diagrams, using design
patterns

2

Modeling with classes: the process of developing class diagrams,
semantics of UML class diagrams, implementing class diagrams in
Java

2

Modeling interactions and behavior: UML interaction and state
diagrams

2

Modeling software behavior: UML state diagrams, software
performance modeling and analysis.

2

Architecting and designing software: design principles (increase
cohesion, reduce coupling), architectural patterns (Layers, Pipe-
and-Filter, etc.)

2

Testing and inspecting to ensure high quality: testing techniques
(equivalence partitioning, path testing) and integration strategies
(top-down, bottom-up, scenario-based), inspections

2

Use case driven development: use case specifications, analysis,
design and implementation to realize the use cases, testing the use
cases

2

Program specifications: pre and post assertions, well-founded
induction, declarative prototyping

2

Bibliography

1. I. Sommerville. Software Engineering (6
th

, 7
th

, 8
th

, 9
th

, 10
th

 editions), Addison Wesley (2001, 2004, 2006, 2010,
2015).

2. T. Lethbridge, R. Laganiere. Object-Oriented Software Engineering: Practical Software Development using UML
and Java (2

nd
 edition), McGraw-Hill, 2005. http://www.lloseng.com.

3. A. Fox, D. Patterson, Engineering Software as a Service: An Agile Approach Using Cloud Computing, Strawberry
Canion, 2016.

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

5. E.M. Clarke, T.A. Henzinger, H. Veith, R. Bloem, editors, Handbook of Model Checking, Springer, 2018.
6. M. Odersky, L. Spoon, B. Venners, Programming in Scala, (3

rd
, 4

th
 editions), Artima (2016, 2020).

7. E.N. Todoran. Inginerie software: studii in prototipizare si specificare formala. Mediamira, Cluj-Napoca, 2006.

8.2 Applications – Laboratory Hours Teaching methods Notes

OCSF – an object client-server framework for reuse oriented
development

2

Simple Chat - an instant messaging system based on OCSF (1) 2

Simple Chat - an instant messaging system based on OCSF (2) 2

Using software modeling CASE tools: UML use case, class,
interaction, state, component and deployment diagrams

2

Using CASE tools for performance software modeling and analysis:
PRISM model checker

2

Using Design Patterns 2

Test cases design, using Junit 2

The project class attempts to simulate various aspects of the real
world of software engineering. The students define the problem to
be solved and the scope of the project under the supervision of the
teaching assistant. Working alone is permitted, but they are
encouraged to work in teams. The students employ the paradigms
and the software development methods that are presented in the
taught course, e.g., following the SaaS (Software as a Service)
model. They are expected to deliver three iterations of the project
with predefined deadlines. For a traditional ‘waterfall’ project the
deadlines correspond to requirements specification, design, and
the final deliverable. The project will be delivered in week 13.

14

Bibliography

http://www.lloseng.com/

4/4

1. T. Lethbridge, R. Laganiere. Object-Oriented Software Engineering: Practical Software Development using
UML and Java (2

nd
 edition). McGraw-Hill, 2005. http://www.lloseng.com.

2. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

3. PRISM manual, 2020. http://www.prismmodelchecker.org/manual/
*
Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional

associations and employers in the field

Software Engineering is a well-established discipline in Computer Science and Information Technology. In this course,
students acquire basic knowledge related to software development (paradigms, methods and tools) and learn to apply
systematic and quantifiable approaches in the development of software systems. Course content has been developed
based on interaction with specialists in Software Engineering from Romania, Europe (UK, Greece), US and Canada and
has been rated by Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type Assessment criteria Assessment methods
Weight in the

final grade

Course Problem solving skills Final exam (using Teams,
Moodle, Discord, Email for
online assessment)

75%

Seminar

Laboratory Software design and validation skills Laboratory colloquium,
Project assessment (using
Teams, Moodle, Discord, Email
for online assessment)

5%
20%

Project

Minimum standard of performance:
Development of a medium size software project using the skills taught in the Software Engineering course.
Grade calculus: 5% laboratory + 20% project + 75% final exam
Conditions for participating in the final exam: Laboratory ≥ 5, Project ≥ 5
Conditions for promotion: grade ≥ 5

Date of filling in: Titulari Titlu Prenume NUME Semnătura
15.09.2020 Course Prof.dr.eng. Eneia Todoran

 Applications Assoc.prof.dr. Paulina Mitrea

 Assoc.prof.dr.eng. Delia Mitrea

Date of approval in the department

Head of department
Prof.dr.ing. Rodica Potolea

Date of approval in the Faculty Council

Dean
Prof.dr.ing. Liviu Miclea

http://www.lloseng.com/
http://www.prismmodelchecker.org/manual/

