SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	3.

2. Data about the subject

2.1 Subject name			Specia	Special Mathematics I				
2.2 Course responsible/led	esponsible/lecturer Prof. dr. Daniela ROŞCA <u>Daniela.Rosca@math.utcluj.ro</u>							
2.3 Teachers in charge of s	semin	iars/	Prof. dr. Daniela ROŞCA Daniela.Rosca@math.utcluj.ro					
laboratory/ project								
2.4 Year of study	Ι	2.5 Sem	ester	1	2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E		
2.7 Subject estagen	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară					DF		
2.7 Subject category	DI – I	DI – Impusă, DOp – opțională, DFac – facultativă						

3. Estimated total time

			-	_		-			
3.1 Number of hours per week	4	of which:	Course	2	Seminars	2	Laboratory	Project	
3.2 Number of hours per	56	of which:	Course	28	Seminars	28	Laboratory	Proiect	
semester									
3.3 Individual study:									
(a) Manual, lecture materia	l and n	otes, bibli	ography						12
(b) Supplementary study in the library, online and in the field						28			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14			
(d) Tutoring							11		
(e) Exams and tests						4			
(f) Other activities:					0				
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 69									
3.5 Total hours per semester (3.2-	3.5 Total hours per semester (3.2+3.4) 125								
3.6 Number of credit points 5									

4. Pre-requisites (where appropriate)

4.1 Curriculum	High school maths, real
4.2 Competence	Combinatorics (arrangements, permutations, combinations); sets and operations with sets; mathematical logic; induction method; calculus with matrices

5. Requirements (where appropriate)

5.1. For the course	Blackboard, videoprojector, computer
5.2. For the applications	Blackboard, videoprojector, computer

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science concepts
	C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication
	systems
	C1.2 - Using specific theories and tools (algorithms, schemes, models,

	 protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Description of the concepts, notions and fundamental methods used in counting and in discrete probabilities theory Presentation of basic notions and properties in graphs theory, algorithms and basis theorems in graphs theory and their proofs
7.2 Specific objectives	Developing strategies for solving and applying reasoning methods for solving combinatorial problems; Identifying combinatorial (pattern) models when solving counting problems; Modeling and formulating, in terms and notations specific to probability theory, specific problems in which random experiments and processes occur; Identification of classical (standard) probabilistic models and distributions of discrete type when solving probability problems; Interpretation of numerical results obtained in problems modeled using random variables; Modeling specific problems, using notions and concepts from graph theory; Application of specific algorithms to classical problems modeled by graph theory (construction of minimum spanning trees, coding and decoding using binary trees, construction of Eulerian and Hamiltonian walks, the Chinese postman problem, flow problems, etc.).

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Combinatorics: counting principles and methods	2		
Counting problems using reccurence relations. Reccurence and	2		
generation functions.	2		
Discrete probabilities (1): Axiomatic introduction in probability			
theory. General formulas and properties. Interpretation of	2		
probabilities. Examples.			
Discrete probabilities (2): Conditional probabilities. Formula on	2		
total probability and Bayes formula. Classic probability schemes	2		
Discrete probabilities (3): Discrete random variables. Expected	2		
value, variance. Examples of discrete random variables.	2	Presentation,	
Discrete probabilities (4): Cebyshev inequality. Poisson theorem.	2	demonstration,	
Discrete probabilities (5): Weak law of large numbers. Markow		exemplification	
theorem, Chebyshev theorem, Poisson theorem. Examples and	2		
applications.		Multimedia – graphic	
Graph theory (1): Directed and undirected graphs: definitions,		tablet,	
notations, general properties. Examples of problems which can be	2	videoprojector,	
solved with graphs. Euler's theorem.		blackboard	
Graph theory (2): Walks, trails, paths, cycles. Connectivity in	2		
graphs. Trees: general properties.	Z		
Graph theory (3): Trees, directed trees, rooted trees, spanning			
trees, minimum spanning trees (MST). Algorithms for (MST): Prim,	2		
Kruskal, Edmonds – Chu-Liu.			
Graph theory (4): DFS (depth-first-search) and BFS (breadth-first-			
search) trees. Properties of BFS trees. Minimum path, Dijkstra's	2		
algorithm.			
Graph theory (5): Binary trees, Huffman's algorithm. Greedy	2		

algorithms. Property of matroid.				
Graph theory (6): Matchings. Bipartite graphs. Matching in				
bipartite graphs. Maximum matching and complete matching:	2			
Hall's and Berge's theorems.				
Graph theory (7): Transportation networks. Flows and cuts. Max	2			
flow min cut theorem.	2			
Bibliography				
[1] Daniela Roșca – Discrete Mathematics, Editura Mediamira, 2008.				
[2] Neculae Vornicescu - Grafe: teorie și algoritmi, Editura Mediamira	a, 2005.			
[3] Ioan Tomescu - Probleme de combinatorică și teoria grafurilor, Ed	litura Dida	actică și Pedagogică, 19	81.	
[4] Sheldon Ross - A first course in probability,5th ed., Prentice Hall, 1	997.			
[5] Norman L. Biggs- Discrete Mathematics, Oxford University Press, 2	2005.			
[6] Martin Aigner - Discrete Mathematics, American Mathematical Sc	ociety, 200)7.		
[7] Daniela Rosca – Matematici speciale, online.	_			
8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes	
Counting problems: Dirichlet's principle, sieve principle, selections.	2	_		
Counting problems: permutations, arrangements, combinations,	2			
with and without repetitions, derrangements.	2			
Counting problems: partitions, integer partitions, distributions,	2			
Stirling numbers.	2			
Elementary problems in discrete probabilities, reduced to counting				
problems, Classical examples with unexpected results.	2			
Conditional probabilities. Applications of Bayes' formula with	-			
interpretation of the results.		_		
Problems reduced to classical probabilities schemes. Discrete	2			
random variables.		_		
Calculation of expected value for discrete random variables.	2			
Application of Chebyshev inequality.		_		
Elementary problems with directed and undirected graphs.	2	_		
Graphs representation: adjacency and incidence matrices.				
Connectivity and adjacency matrices; Foulkes method for finding	2			
the connected components.		_		
Rooted trees, decision trees, sorting trees. Applications.	2			
Isomorphic graphs.	2			
Greedy algorithms: vertex colouring, the four colors theorem	2			
Eulerian and hamiltonian graphs. The Chinese postman problem.	2			
Activities networks, critical path. Transportation networks: flows	2			
and cuts.	2			
Counting problems: Dirichlet's principle, sieve principle, selections.	2			
Dibliggraphy				

Bibliography

[1] Hannelore Lisei, Sanda Micula, Anna Soos, *Probability Theory through Problems and applications*, Cluj University Press, 2006.

[2] Arthur Enghel - *Probleme de matematică: strategii de rezolvare*, Ed. Gil, 2006.

[3] Daniela Rosca – *Special Mathematics*, online.

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Knowing basic notions, solving problems	Written examination face to	50%
		face or oral+ written	
		examination online, depending	

		on the evolution of Covid19	
Construction	Cabring machines	pandemic.	500/
Seminar	Solving problems	the semester	50%
Laboratory			
Project			
Minimum standar Final mark=1 p + A Minimum standar	d of performance: A+B, A= mark for countin d: A>=0.5, B>=0.5, A+B>	ng and probability theory (max=4.5), B= mark for graph t >=4.	heory (max=4.5).
Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Prof.dr.math. Daniela Rosca	
	Applications	Prof.dr.math. Daniela Rosca	
Date of approval	in the department	Head of department	
	in the department	Prof.dr.ing. Rodica Potolea	a
Date of approval	in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea	