SYLLABUS

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	15.

2. Data about the subject

2.1 Subject name Electronic Measurements and Sensors			Measurements and Sensors			
2.2 Course responsible/le	cture	r	Assoc. Professor Rodica Holonec, Phd eng			
2.3 Teachers in charge of laboratory/ project	semi	nars/	Lecturer Septimiu Crisan, Phd eng			
2.4 Year of study	Ш	2.5 Sem	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E	
2.7 Cubicat acta com.	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară				DD	
2.7 Subject category DI – Impusă, DOp – opțională, DFac – facultativă				ă, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per	56	of which:	Course	28	Seminars		Laboratory	28	Project	
semester	30	Or writeri.	Course	20	Sciiiiiai 3	Lai	Laboratory	20	roject	
3.3 Individual study:										
(a) Manual, lecture material and notes, bibliography						15				
(b) Supplementary study in the library, online and in the field							8			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							15			
(d) Tutoring							3			
(e) Exams and tests							3			
(f) Other activities:							-			

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	44
3.5 Total hours per semester (3.2+3.4)	100
3.6 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum	
4.2 Competence	Basic Electrical circuit theory, Basic Electronics, Analysis methods for
	electronic circuits; General Physics

5. Requirements (where appropriate)

5.1. For the course	Computer, Cloud-based team collaboration software
5.2. For the applications	Laboratory room equipped with specific measuring devices and sensors

6. Specific competence

6.1 Professional competences	C1 – Operating with basic Mathematical, Engineering and Computer Science						
	concepts (2 credits)						
	C1.1 – Recognizing and describing concepts that are specific to the fields of						
	calculability, complexity, programming paradigms, and modeling						
	computational and communication systems						

6.2 Cross competences	C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems C2 – Designing hardware, software and communication components (2 credits) C2.1 – Describing the structure and functioning of computational, communication and software components and systems C2.2 – Explaining the role, interaction and operation of hardware, software and communication components C2.3 – Construction of hardware and software components of computing systems using design methods, languages, algorithms, data structures, protocols and technologies C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 – Implementation of hardware, software and communication components N/A
6.2 Cross competences	N/A

7. Discipline objective (as results from the key competences gained)

Discipline objective (as results from the key competences gained)					
7.1 General objective	To provide a foundation in important topics of engineering system instrumentation such as: metrology, measurement techniques, electronic measurement devices, sensors principles and applications, virtual instrumentation				
7.2 Specific objectives	To provide principle knowledge, practical training and measurement best practice regarding the instrumentation systems To provide knowledge about sensors in order to perform the documentation, implementation, and development of complex equipment and measurement devices.				

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Measurement fundamentals. Terms and definitions. The structure of a complex instrumentation system. Sensors	2		
Fundamentals of Metrology. Measurement Units. Measurements Standards. Traceability. Measurement terminology. Errors and Uncertainties. The Measuring Instrument Specifications.	2		
Random Errors Analysis. Basic Concepts in Probability. Normal Distribution. Central Limit Theorem. The Evaluation of Uncertainties in Measurements	2	Presentation, heuristic conversation,	The lectures are taught online
Meters. Analog Meters-Classifications and Symbols. Types of Analog Instruments. Voltmeters. Ammeters. Wattmeters, Ohmmeters	2	exemplification, problem presentation,	
Measurements with Bridges and Potentiometers. Wheatstone Bridge. Principle. Strain gauge measurement bridges. Types of AC bridges. Potentiometers.	2	teaching exercise, case study, formative evaluation	
Amplification in Instrumentation. Operational Amplifiers. Basic circuits. Instrumentation Amplifiers. Current to Voltage, Resistance to Voltage Converters. Bridge Amplifiers.	2		

Electronic Voltmeters. DC Electronic Voltmeters. Types of AC Electronic Voltmeters. Lock-in Amplifiers. Principles and Applications	2
Electronic Counters. Digital measurement of frequency and time	2
Digital Multi-meters (DMM). Computing Measuring Systems. Data Acquisition Boards. Sample and Hold Circuits. Nyquist theorem.	2
Data Acquisition Boards Components. Digital to Analog Converters. Analog to Digital Converters. Virtual Instruments	2
The Analog and Digital Oscilloscopes	2
Transducers, Sensors and Actuators. Terminology. Principles and Classifications. Analog and Digital Sensors.	2
Analog Sensors. Potentiometers. Variable-Inductance and Capacitance Sensors. Temperature sensors.	2
Digital sensors. Encoders. Optical Sensors: Fiber-Optic Sensors, Light sensors	2

Bibliography

- 1. Rodica Holonec, Electrical Measurements and Instrumentation, Editura Mediamira, Cluj-Napoca, 2003, 259 p, ISBN 973-9357-42-3
- 2. Todoran, Gh., Copandean, R; Masurari Electrice si Electronice. Editura Mediamira; Cluj Napoca. 2003. 282p. ISBN 973-9357-61-X.
- 3. Dragomir, N.D., TÂRNOVAN, I.G., Crişan, T.E. Electrical Measurement of Non Electric Quantities. Vol. I. Editura MEDIAMIRA, Cluj-Napoca, România, 2002. ISBN 973-9358-75-6.
- 4. TÂRNOVAN, I. G. Metrologie electrică şi instrumentație. Editura MEDIAMIRA, Cluj-Napoca, România, 2003. ISBN 973-9357-39-3.
- 5. Munteanu, R., TÂRNOVAN, I.G., Dragomir, N.D., Popovici, O. Electrotehnică și convertoare energetice. Editura MEDIAMIRA, Cluj-Napoca, România, 1997.
- 6. http://users.utcluj.ro/~tarnovan/Electronic%20Measurements%20and%20Sensors.htm

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Analog and Digital Measurement Devices	2		
Domain Extension of Analog Measurement Instruments	2		Experimental circuits,
Single-phased A.C. Circuits Measurements	2		
The Wheatstone Bridge	2		
The Oscilloscope. Basics and Measuring Principles	2		
Virtual Instrumentation: LabView - Basic Operations	2		
Virtual Instrumentation applications	2		
Data Acquisition Systems: Single Sample Acquisition Mode	2	0 '' 0 ''	
Data Acquisition Systems. Signal Processing Applications	2	Onsite & online	Computer
Temperature Measurement	2	applications	LabView
Level and Flow Measurement	2		software, NI
Displacement Measurement	2		hardware
Angular Speed Measurement	2]	
Final Assessment of Laboratory Reports	2		

Bibliography

- 1. Rodica Holonec, B. Tebrean, I.G. Tarnovan, Gh. Todoran, Electronic Measurements: Laboratory Manual Editura U.T. PRESS, Cluj-Napoca 2010, ISBN 978-973-662-600
- 2. Munteanu,R., Dragomir,N.D., TÂRNOVAN,I.G., Holonec,Rodica, Bortoş,P. Tehnici de măsurare. Îndrumător de laborator. Atelierul de multiplicare al U.T.C.-N., 1995.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired skills will be required of employees who work in designing or testing of sensors and instrumentation systems.

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Final exam (E)-Theoretical questions and exercises (3 hours) Online examination		80%
Seminar			
Laboratory	Practical circuit (P)	Checking of functionality	10%
	Homework (HW)	Verification of results	10%
Project			
Minimum standar	rd of performance: G=(E+P+HW)/100; Conditi	on to take the credits: G≥5;	

Date of filling in:	Titulari	Titlu Prenume NUME	Semnătura
	Course	Assoc.Prof. Rodica Holonec, PhD eng	
	Applications	Lecturer Septimiu Crisan, PhD eng	
	••	Lecturer Septimia Crisan, PhD eng	

Date of approval in the department	Head of department Prof.dr.ing. Rodica Potolea
Date of approval in the Faculty Council	Dean Prof.dr.ing. Liviu Miclea