1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	44.

2. Data about the subject

2.1 Subject name			Compu	Computer networks		
2.2 Course responsible/lecturer			Prof. dr. eng. Vasile Dădârlat – vasile.dadarlat@cs.utcluj.ro			,
2.3 Teachers in charge of s	emina	ars/	Assoc.	Assoc.prof. dr. eng. Peculea Adrian – Adrian.Peculea@cs.utcluj.ro		
laboratory/ project			Lect. dr. eng. lancu Bogdan – Bogdan.lancu@cs.utcluj.ro			
2.4 Year of study	IV	2.5 Sem	nester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		E	
2.7 Cubicat astasamı	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DD		
2.7 Subject category DI – Impusă, E		00p – o _l	oțion	ală, DFac – facultativă	DI	

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							40
(b) Supplementary study in the library, online and in the field							10			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20			
(d) Tutoring										
(e) Exams and tests							4			
(f) Other activities:										
3.4 Total hours of individual study (suma ((3.3(a)3.	3(f)))		74					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	74
3.5 Total hours per semester (3.2+3.4)	130
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum	
4.2 Competence	Basic knowledge in programming languages (C, Java)
	Computer architecture, Operating systems

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Classroom, PC with internet access

6.1 Professional competences	 C2: Designing hardware, software and communication components C2.1: Describing the structure and functioning of computational, communication and software components and systems C2.2: Explaining the role, interaction and functioning of hardware, software and communication components
	C2.3: Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4: Evaluating the functional and non-functional characteristics of the

	computing systems using specific metrics C2.5: Implementing hardware, software and communication systems
6.2 Cross competences	N/A

7.1 General objective	Teamwork, working with partial and contradicting specifications
7.2 Specific objectives	Each student able to design LAN's software & hardware architecture

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. Concepts, network types, characteristics, evolution, standards	2		
ISO-OSI Reference model and Internet's TCP/IP protocol stack. OSI			
abstract model presentation, description of protocol functions for	2		
every layer. General presentation for TCP/IP protocol stack			
Data transmission techniques. Data transmission concepts, analog	2		
and digital transmission techniques, coding, communication channels	2		
Types of computer networks. Architectures, evolution, topologies,	2		
physical parameters	2		
Physical level. Transmission media, characteristics, performances,	2		
connectors, structured cabling system	2	0	
Medium access control. Medium access techniques for local (wired	2	Oral Presentations	
and wireless) and wide area networks	2	using multimedia	
Data Link level. Functions, problems, protocols, case study: HDLC	2	means	
Local Area Computer Networks. Fundamentals, architectures,	2	Q & A Interactive teaching	
evolution	2	interactive teaching	
Local Area Computer Networks. Systems, performances	2		
Computer Networks Interconnection. Devices for network	2		
interconnection; presentation of bridges, switches and routers	2		
Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address	2		
resolution protocol. Routing protocols	2		
Transport level protocols. TCP protocol; congestion control. TCP and	2]	
UDP sockets	2		
General introduction to Internet applications. File transfer. Electronic	2]	
mail, multimedia transmissions, network management	2		
General introduction to Internet applications. Security issues	2		

Bibliography

- 1. V.Dadarlat, E.Cebuc Reţele Locale de Calculatoare de la cablare la interconectare, Editura Albastra (Microinformatica), Cluj, 2006, ISBN 973-650-161-2
- 2. W. Stallings, Data and Computer Communications; Prentice Hall, 2004-2014
- 3. A. Tanenbaum Computer Networks, Prentice Hall, 2005- 2010 (A. S. Tanenbaum, Reţele de Calcultoare; Agora Press)

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Cooper based transmission media and UTP cabling	2		
Optical fibers and components	2		
Structured Cabling	2		
Medium Access Methods	2		
Connectivity to Network: IPv4 subnets and basic router configuration	2	Practical exercises	
Connectivity to Network: DHCP and IPv4 static routing	2	Brief presentation of	
Connectivity to Network: IPv6 introduction and static routing	2	possible solutions	
Transport layer: TCP/UDP and Network Programming using Socket	2	Self testing	
Wireshark – network analysis	2	programmes	
VLAN and inter-VLAN routing	2		
Wireless LAN	2		
Spanning-tree protocol	2		
Port link aggregation: Etherchannel	2		
Lab exam	2		

Notes & lab notes available at: ftp.utcluj.ro

- 1. V.Dadarlat, E.Cebuc Reţele Locale de Calculatoare de la cablare la interconectare, Editura Albastra (Microinformatica), Cluj, 2006, ISBN 973-650-161-2
- 2. W. Stallings, Data and Computer Communications; Prentice Hall, 2004-2014
- 3. A. Tanenbaum Computer Networks, Prentice Hall, 2005- 2010 (A. S. Tanenbaum, Reţele de Calcultoare; Agora Press)
- 4. https://moodle.cs.utcluj.ro/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course content is kept state of the art by using latest protocols and devices available on the market.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Interactivity and initial preparation, intermediary and final written examinations	Written exam (2,5 h).	70%
Seminar			
Laboratory	Quality of practical work, participation	Continuous assessment, final written colloquium	30%
Project			

Minimum standard of performance:

Grade calculus: 30% laboratory + 70% final exam

Conditions for participating in the final exam: Laboratory ≥ 5

Conditions for promotion: grade ≥ 5

Course responsible Prof. dr. eng. Vasile Dădârlat

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	45.

2. Data about the subject

2.1 Subject name			Distrib	uted	systems	
2.2 Course responsible/led	turer		Prof. d	Prof. dr. eng. Ioan Salomie – <u>Ioan.Salomie@cs.utcluj.ro</u>		
2.3 Teachers in charge of seminars/		Assoc.prof.dr.Eng. Tudor Cioara, Assoc.prof.dr. Eng. Ionut Anghel, S.I.dr.eng.				
laboratory/ project			Marcel Antal, As. Drd. Claudia Pop, As. Drd. Dorin Moldovan			
2.4 Year of study	IV	2.5 Sem	ester	ster 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		
2.7 Cubicat actacam	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară				DS	
2.7 Subject category DI – Impusă, I			00p – o _l	Op – opțională, DFac – facultativă		

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per semester		of which:			Seminars		Laboratory	28	Project	14
3.3 Individual study:	, 0	or winein	Course		Serimiars		<u> Laborator</u> y		Troject	
(a) Manual, lecture material	and no	tes, biblio	graphy							18
(b) Supplementary study in the library, online and in the field							6			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								24		
(d) Tutoring										
(e) Exams and tests								12		
(f) Other activities:										
3.4 Total hours of individual study	(suma	(3.3(a)3.	3(f)))		60					
· · ·										

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	60
3.5 Total hours per semester (3.2+3.4)	
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer networks
4.3 Competence	Ability to analyze and design a local network using simulators available
	Ability to design an application using layered architectures
	Ability to code using OOP languages.
	Ability to design and implement a relational database and write SQL queries.

5. Requirements (where appropriate)

5.1. For the course	Whiteboard, projector, computer
5.2. For the applications	Computers, software specific

6.1 Professional competences	C4 - Improving the performances of the hardware, software and communication systems (2 credits)
	C4.1 - Identifying and describing the defining elements of the performances of
	the hardware, software and communication systems
	C4.2 - Explaining the interaction of the factors that determine the performances
	of the hardware, software and communication systems
	C4.3 - Applying the fundamental methods and principles for increasing the

	performances of the hardware, software and communication systems						
	C4.4 - Choosing the criteria and evaluation methods of the performances of the						
	hardware, software and communication systems						
	C4.5 - Developing professional solutions for hardware, software and						
	communication systems based on performance optimization						
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity						
	of hardware, software and communication systems (2 credits)						
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality,						
	security and the computing system's interaction with the environment and the						
	human operator						
	C5.2 - Using interdisciplinary knowledge for adapting the computing system to						
	the specific requirements of the application field						
	C5.3 - Using fundamental principles and methods for ensuring the security, the						
	safety and ease of exploitation of the computing systems						
	, , , , , , , , , , , , , , , , , , , ,						
	C5.4 - Proper utilization of the quality, safety and security standards in the field of						
	information processing						
	C5.5 - Creating a project including the problem's identification and analysis						
	design and development, also proving an understanding of the basic quality						
	requirements						
	C6 - Designing intelligent systems (1 credit)						
	C6.1 - Describing the components of intelligent systems						
	C6.2 - Using domain-specific tools for explaining and understanding the						
	functioning of intelligent systems						
	C6.3 - Applying the fundamental methods and principles						
	for specifying solutions for typical problems using intelligent systems						
	C6.4 - Choosing the criteria and evaluation methods for the quality, performances						
	and limitations of intelligent systems						
	C6.5 - Developing and implementing professional projects for intelligent systems						
6.2 Cross competences	N/A						
<u>'</u>	ı ·						

7.1 General objective	Capacity to analyse, develop and implement distributed software systems
7.2 Specific objectives	-Capacity of designing distributed systems at both architectural and components'
	level by using the main concepts and paradigms of the domain as well as the
	capacity of understanding the relationships of the domain with other computer
	science areas.
	-Capacity of identifying the main models, techniques and technologies that could
	be used in the design of distributed systems by considering a set of functional
	and non-functional specifications and constraints
	-Capacity of developing and using service based technologies for designing
	distributed systems
	- Capacity of using Java si .NET technologies for designing distributed systems.
	- Capacity of using Web service technologies – XML, SOAP, WSDL, UDDI and REST
	- Capacity of developing Web services using Java and NET. technologies
	- Capacity to develop client applications for distributed systems using Javascript
	based technologies
	-Capacity to design and develop platforms for distributed app deployment
	considering the involved servers and network settings

8. Contents

o. contents			
8.1 Lectures	Hours	Teaching methods	Notes
Introduction – Characterization of Distributed Systems	2	-Using modern	
Distributed System Models, Architectures and Middleware	2	multimedia teaching	
Non-Functional Requirements, QoS, Metrics	2	methods and direct	
Inter-process Communication, Message passing, Sockets	2	access to internet;	

Distributed Computation Model, Time and Causality, Logic Clocks	2	-Challenging questions
Global States, Snapshots, Distributed Algorithms	2	during lecturers -Students are invited
Distributed Data Processing – Concepts , Reference Architectures	2	to collaborate in
RPC, RMI, XML RPC, gRPC, SOA	2	research projects
Distributed Data Processing, Data Distribution Techniques	2	-Personal assistance
Distributed Transactions and Concurrency Control	2	hours during the semester and before
Error handling is distributed systems	2	the exam
SOA and Web Services	2	
Cloud Computing and Systems	2	
IoT, Cyber-Physical Systems, Adaptive Systems, P2P Systems	2	

- 1. G. Coulouris, J.Dollimore, T.Kindberg Distributed Systems. Concepts and Design, Addison Wesley, 2005
- 2. A. Tanenbaum, M. van Steen Distributed Systems, Prentice Hall, 2002
- 3. A.D. Kshemkalyan M.Singhal Distributed Computing, Cambridge Press 2008
- 4. Ioan Salomie, Tudor Cioara Lecture Notes, Lab Notes Project Notes and Assignments http://www.coned.utcluj.ro/~salomie/DS Lic

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
The basics of Web programming, Request - Reply (2 lab sessions)	4		
Distributed Objects (2 lab sessions)	4	- Pre-defined exercises and assignments	
Message based computing and systems (2 lab sessions)	4	-Short presentation of	
SOA and Web services (2 lab sessions)	4	lab works,	
Layered architectures in distributed systems (2 sessions)	4	- Design and	
REST services (1 lab session)	2	implementation	
Client applications based on Javascript frameworks	2		
Test, evaluation	4		

Bibliography

- 1. Ioan Salomie, Tudor Cioara, Ionut Anghel, Tudor Salomie Distributed Computing and Systems A practical Approach, Albastra Publ. House, 2008
- M. Antal, C. Pop, D. Moldovan, T. Petrican, C. Stan, I. Salomie, T. Cioara, I. Anghel, Distributed Systems Laboratory Guide, Editura UTPRESS Cluj-Napoca, 2018 ISBN 978-606-737-329-5, 2018, https://biblioteca.utcluj.ro/files/carti-online-cu-coperta/329-5.pdf
- Ioan Salomie, Tudor Cioara Lecture Notes, Lab Notes Project Notes and Assignments http://www.coned.utcluj.ro/~salomie/DS_Lic

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Distributed Systems is a subject of the domain "Computers and Information Technology".

It teaches students about the development and implementing of distributed software systems. The content was developed based on the analysis of similar disciplines from other universities as well as based on the requirements of the IT employees. The content was also evaluated by Romanian governmental agencies CNEAA and ARACIS.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The level of assimilation of the knowledge about distributed systems, teacher during the course	Written Exam	55%
Seminar			
Laboratory	-Capacity of designing distributed systems at both	Assignments evaluation,	
Project	architectural and components' level by using the	Project evaluation	2004
	main concepts and paradigms of the domain as well		30%
	as the capacity of understanding the relationships of		15%
	the domain with other computer science areas.		

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

-Capacity of identifying the main models, techniques	
and technologies that could be used in the design of	
distributed systems by considering a set of functional	
and non-functional specifications and constraints	
-Individual activity during course, lab and project	
-Attendance	

Minimum standard of performance:

- To be able to design and implement distributed software systems.

Grade calculus: 30% laboratory + 15% project + 55% final exam

Conditions for participating in the final exam: Laboratory ≥ 5, Project ≥5

Handing over all laboratory assignments and obtain a minimum grade of 5 on each assignment; At least 11 laboratory presences

Conditions for promotion: final exam ≥ 5

Obtain a minimum grade of 5 for each category of exam questions (theory, technologies and problem)

Course responsible Prof. dr. eng. Ioan Salomie

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	46.1

2. Data about the subject

2.1 Subject name			Input/Output Systems and Peripheral Devices					
2.2 Course responsible/lecturer			Prof. D	Prof. Dr. Eng. Zoltan Francisc Baruch – Zoltan.Baruch@cs.utcluj.ro				
2.3 Teachers in charge of seminars/			Prof. D	Prof. Dr. Eng. Zoltan Francisc Baruch – Zoltan.Baruch@cs.utcluj.ro				
laboratory/ project		Eng. M	Eng. Mihai Grigorescu – mihaigrigorescu13@gmail.com					
2.4 Year of study	IV 2.5 Semester				2.6 Type of assessment (E - exam, C - colloquium, V - verification)	E		
2.7 Cubicat actors	DF -	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară						
2.7 Subject category	DI – I	DI – Impusă, DOp – opțională, DFac – facultativă						

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars	Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars	Laboratory	28	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	otes, biblio	graphy						34
(b) Supplementary study in the library, online and in the field							12		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						18			
(d) Tutoring						5			
(e) Exams and tests						5			
(f) Other activities:							0		
3.4 Total hours of individual study (suma	(3.3(a)3.	3(f)))		74				

3.5 Total hours per semester (3.2+3.4)	130
3.6 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer Programming, Computer Architecture
4.4 Competence	Competences of disciplines Computer Programming and Computer Architecture

5. Requirements (where appropriate)

5.1. For the course	Projector, computer
5.2. For the applications	Computers, the Microsoft Visual Studio programming environment

6.1 Professional competences	C4 – Improving the performances of the hardware, software and communication
·	systems (2 credits)
	C4.1 – Identifying and describing the defining elements of the performances of
	the hardware, software and communication systems
	C4.2 – Explaining the interaction of the factors that determine the performances
	of the hardware, software and communication systems
	C4.3 – Applying the fundamental methods and principles for increasing the
	performances of the hardware, software and communication systems
	C4.4 – Choosing the criteria and evaluation methods of the performances of the
	hardware, software and communication systems

	C4.5 - Developing performance based professional solutions for hardware, software and communication systems C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (3 credits) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator C5.2 - Using interdisciplinary knowledge for adapting an information system to application domain requirements C5.3 - Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems C5.4 - Adequate utilization of quality, safety and security standards in
	safety and ease of exploitation of the computing systems
	C5.5 - Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements
6.2 Cross competences	N/A

7.1 General objective	Knowledge of operation and performance parameters for input/output interfaces and peripheral devices; ability to communicate with controllers of peripheral devices
7.2 Specific objectives	 Using basic methods and principles for enhancing performance of computer systems Designing input/output interfaces for connecting various devices to the computer Designing and implementing in software input/output protocols Writing system programs for controlling input/output interfaces

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction. Programmed I/O	2		
Interrupt-Driven I/O. Direct Memory Access. I/O Processors	2		
Buses. Electrical Considerations. Synchronous and Asynchronous Buses. Bus Arbitration. VME Bus	2		
Local Buses. PCI Bus. PCI-X Bus. PCI Express Bus	2		
PCI Bus Variants for Personal Computers. PCI Bus Variants for Industrial Systems	2		
Serial Buses: I ² C; SPI; USB	2		
Mid-Term Exam	2		
Liquid Crystal Displays. Liquid Crystals. TN Technology. Addressing Methods. Backlighting	2	- PowerPoint presentations	
Liquid Crystal Displays (cont.). Characteristics. VA Technology. IPS Technology	2	- Questions, discussions	
Plasma Displays. Field Emission Displays. Organic LED Displays	2		
Graphics Adapters. Structure of a Graphics Adapter. Color Representation. Video Memory. Graphics Accelerators. 3D Accelerators	2		
Graphics Processing Units. Digital Interfaces for Monitors: DVI; HDMI; DisplayPort	2		
Optical Discs. Physical Medium. Data Organization and Encoding. The CD-ROM Drive. Types of Compact Discs	2		
DVD Discs. Blu-Ray Discs	2		
Bibliography	•	•	

- 1. Baruch, Z. F., Computer Input/Output Systems (in Romanian), Cartea Albastră, Cluj-Napoca, 2000, ISBN 973-9443-39-7.
- 2. Rosch, Winn L., Hardware Bible, Sixth Edition, Que Publishing, 2003, ISBN 0-7897-2859-1.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
--	-------	------------------	-------

The Serial Port (I)	2		
		-	
The Serial Port (II)	2		
The PCI Express Bus (I)	2		
The PCI Express Bus (II)	2		
The System Management Bus (I)	2	A 1 12:1	
The System Management Bus (II)	2	- Additional	
The Universal Serial Bus (I)	2	explanations	
The Universal Serial Bus (II)	2	- Using a programming environment for the C	
Printers	2	language	
The SCSI Interface	2	language	
The ATA Interface (I)	2		
The ATA Interface (II)	2		
Compact Discs. The ATAPI Interface	2		
Laboratory Colloquy	2		
Bibliography			

1. Lecture slides and laboratory works at http://users.utcluj.ro/~baruch/en/pages/teaching/inputoutput-systems.php

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The contents of the discipline has been corroborated with the contents of similar disciplines in the USA and Europe, as well as with chapters related to input/output systems of acknowledged manuals used in prestigious universities. The discipline has been evaluated by the ARACIS agency.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Understanding theoretical concepts of input/output systems and the principle of operation for peripheral devices	Written exam	70%
Seminar			
Laboratory	Ability to write communication programs with controllers of peripheral devices	Written evaluation	30%
Project			

Minimum standard of performance:

Finishing at least one application in each laboratory session

Grade calculus: 30% laboratory + 70% final exam

Conditions for participating in the final exam: Laboratory ≥ 5

Conditions for promotion: final exam ≥ 5

Course responsible Prof. Dr. Eng. Zoltan Baruch

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	46.2

2. Data about the subject

2.1 Subject name			Paralle	Parallel and Distributed Computing				
2.2 Course responsible/lec	turer		S.l.dr.ii	S.l.dr.ing. Anca Hangan – <u>Anca.Hangan@cs.utcluj.ro</u>				
2.3 Teachers in charge of s	emina	ars/	S.l.dr.ing. Anca Hangan – <u>Anca.Hangan@cs.utcluj.ro</u>					
laboratory/ project								
2.4 Year of study	IV	2.5 Sem	ester	ster 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е		
2.7 Cubicat catagony	DF -	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară						
2.7 Subject category	DI – I	– Impusă, DOp – opțională, DFac – facultativă DO						

3. Estimated total time

3.1 Number of hours per week	4	of which:	Course	2	Seminars		Laboratory	2	Project	
3.2 Number of hours per semester	56	of which:	Course	28	Seminars		Laboratory	28	Project	
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							28
(b) Supplementary study in the library, online and in the field							14			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							24			
(d) Tutoring								4		
(e) Exams and tests								4		
(f) Other activities:										
3.4 Total hours of individual study	suma	(3.3(a)3.	3(f)))		74					
3.5 Total hours per semester (3.2+3	3 4)				130					

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Fundamental Algorithms, Fundamental programming techniques
4.5 Competence	C/C++ programming

5. Requirements (where appropriate)

5.1. For the course	Whiteboard, projector, computer
5.2. For the applications	Computers, Condor middleware, MPI library, C/C++ programming development
	environment

6.1 Professional competences	C4 Improving the performances of the hardware, software and communication systems (2 credits)
	C4.1 Identifying and describing the defining elements of the performances of the
	hardware, software and communication systems
	C4.2 Explaining the interaction of the factors that determine the performances of
	hardware, software and communication systems
	C4.3 Applying fundamental methods and principles for increasing performance of
	hardware, software and communication systems
	C4.4 Choosing criteria and methods for performance evaluation of hardware,

	software and communication systems
	C4.5 Developing professional solutions for hardware, software and
	communication systems based on performance optimization
	C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity
	of hardware, software and communication systems (3 credits)
	C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator
	C5.2 Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field
	C5.3 Using fundamental principles and methods for security, reliability and usability assurance of computing systems
	C5.4 Adequate utilization of quality, safety and security standards in information processing
	C5.5 Creating a project including the problem's identification and analysis, its
	design and development, also proving an understanding of the basic quality requirements
6.2 Cross competences	N/A

	to nom the key competences games,
7.1 General objective	 Students become aware of differences and similarities between parallel and distributed computing so the students understand the boundaries of both domains. Students become familiar with the principles of designing parallel programs.
	3. Students become familiar with the main classes of distributed algorithms.
7.2 Specific objectives	Parallel algorithms performance and scalability. Parallel algorithms design. Distributed algorithms: time synchronization, distributed mutual exclusion, causal ordering, leader election and snapshots.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction: goal, administrative issues, parallel vs distributed computing.	2		
Parallel computing basics: computer architectures and programming models.	2		
Parallel algorithm design: parallelization process, data dependency.	2		
Parallel algorithm design: case study - ocean simulation.	2		
Parallel algorithm design: decomposition and mapping techniques.	2		
Improving the performance of parallel programs: load balancing issues.	2		
Improving the performance of parallel programs: serialization and communication issues.	2]	
Workload-driven evaluation of parallel systems.	2	Interactive lectures	
Cache coherence in symmetric multiprocessors.	2	using PPT presentations and	
Parallel computing on distributed resources: Grid computing vs Hadoop.	2	exercises (at whiteboard).	
Time: physical clocks synchronization (Cristian algorithm, Berkeley algorithm, Network Time Protocol), logical clocks (Scalar time, Vector time, efficient implementation of vector clocks - Singhal-Kshemkalyani).	2	- willeboard).	
Causal ordering: problem definition, Birman-Schiper-Stephenson, Schiper-Eggli-Sandoz.	2		
Leader election: problem definition, general networks (FloodMax, OptFloodMax), synchronous / asynchronous ring (LeLann, Chang-Roberts, Hirschberg-Sinclair).	2		
Leader election: synchronous / asynchronous ring (Franklin, Peterson), anonymous ring (Itai-Rodeh).	2		

- 1. Parallel and Distributed Computing Lecture notes C. Ivan ,http://ftp.utcluj.ro/pub/users/civan/PDC
- 2. *Introduction to Distributed Systems* -Concepts and design. George Coulouris, Jean Dollimore and Tim Kindberg, Prentice Hall, ISBN 0201-619-180, 2005 si editia revizuită 2008
- 3. Distributed computing: principles, algorithms and systems, M. Singhal, A Kshemkalyani, Cambridge University Press, 0521876346, 2008

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction to grid computing	2		
Job execution in Condor (Part 1)	2		
Job execution in Condor (Part 2)	2		
Workflows in Condor. Assignment 1.	2		
Laboratory test 1. Introduction to MPI.	2		
Point-to-point communication in MPI	2		
Collective communication in MPI. Assignment 2.	2		
Advanced collective communication and groups in MPI.	2	Problem based	
Implementing matrix multiplication using Cannon's algorithm (Part 1). Assignment 3.	2	approach.	
Implementing matrix multiplication using Cannon's algorithm (Part 2)	2		
Performance assessment of parallel programs. Shared memory model. Assigment 4.	2		
Performance assessment of parallel programs. Message passing model.	2		
Assignment 4 evaluation of individual results and group discussion.	2		
Laboratory Test 2.	2		

Bibliography

- 1. Anca Hangan, Anca Rarau, Catalin Sipos, "Parallel and Distributed Computing", 2009, UTPRESS, ISBN: 978-973-662-484-1
- 2. Introduction to Parallel Computing, V.Kumar, A. Grama, A. Gupta, G. Karypis, Benjamin-Cummings, ISBN 0-201-64865-2
- 3. Programming on parallel machines GPU, multicore and clusters, N. Mathloff, University of California Davis, 2016, http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

As Cluj software workforce market gets more sophisticated, having solid knowledge of how to develop parallel programs and mastering the distributed computing are qualities that software companies look for.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Formal assessment to test theoretical knowledge and problem solving skills. Attendance and activity.	Assignments and written exam.	60%
Laboratory	Formal assessment to test practical skills for designing parallel and distributed solutions and implementation . Attendance and activity.	Assignments and tests.	40%

Minimum standard of performance:

Design and implementation of parallel/distributed solutions using the theoretical models and tools (MPI, Condor grid middleware).

Pre-requisite for written exam: 6 mandatory lecture attendances.

Grade calculus: 40% laboratory + 10%course assignments+50% final exam

Conditions for participating in the final exam: Laboratory ≥ 5

Conditions for promotion: grade ≥ 5

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	47.1

2. Data about the subject

2.1 Subject name	•	Operating Systems Design							
2.2 Course responsible/le	cturer	rer Assoc.prof. dr. eng. Adrian Coleşa – <u>adrian.colesa@cs.utcluj.ro</u>							
2.3 Teachers in charge of seminars/		Assoc.	orof.	dr. eng. Adrian Coleşa – <u>adrian.colesa@cs.utcluj.ro</u>					
		Eng. Al	Eng. Alexandru Gurzou – <u>agurzou@bitdefender.com</u>						
		Eng. Is	tvan S	Szekely – <u>iszekely@bitdefender.com</u>					
		Eng. Da	Eng. David Acs – dacs@bitdefender.com						
laboratory/ project			Eng. Balint Szabo – <u>bszabo@bitdefender.com</u>						
			Eng. Laslo Ciople – <u>lciople@bitdefender.com</u>						
			Eng. Lilla Nagy – <u>Inagy@bitdefender.com</u>						
2.4 Year of study	IV	IV 2.5 Semester			2.6 Type of assessment (E - exam, C - colloquium, V - verification)	Е			
2.7 Subject category		entală, DD – în domeniu, DS – de specialitate, DC – complementară							
		DOp – o _l	OOp — opțională, DFac — facultativă						

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars	Labora	atory	2	Project	1
3.2 Number of hours per semester	70	of which:	Course	28	Seminars	Labora	atory	28	Project	14
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							40
(b) Supplementary study in the library, online and in the field						0				
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							42			
(d) Tutoring							1			
(e) Exams and tests							2			
(f) Other activities:										0
3.4 Total hours of individual study	suma	(3.3(a)3.	3(f)))		85					

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	85
3.5 Total hours per semester (3.2+3.4)	155
3.6 Number of credit points	6

4. Pre-requisites (where appropriate)

4.1 Curriculum	Operating Systems
4.6 Competence	C programming; Define and use basic OS concepts and system calls

5. Requirements (where appropriate)

5.1. For the course	Blackb	Blackboard / Whiteboard, Beamer							
5.2. For the applications	64-bit	64-bit Computers with hardware virtualization support, 64-bit Linux and							
	Windo	Nindows, VMware Workstation, Blackboard / Whiteboard							

6.1 Professional competences	C5: Designing, managing the lifetime cycle, integrating and ensuring the integrity
	of hardware, software and communication systems
	C5.1 : Specifying the relevant criteria regarding the lifetime cycle, quality, security
	and the computing system's interaction with the environment and the human

	C5.2: Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field C5.3: Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems C5.4: Proper utilization of the quality, safety and security standards in the field of information processing C5.5: Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
6.2 Cross competences	N/A

7.1 General objective	Provide the students a clear understanding of an OS' internal structure, its main							
	omponents' role and functionality, and the fundamental OS design and							
	implementation strategies.							
7.2 Specific objectives	Let the students:							
	1. Know and understand the possible OS internal structures.							
	2. Know and understand the possible design and implementation alternatives							
	of the main OS components, like the scheduler, process and thre							
	manager, memory manager etc.							
	3. Be able to analyze a specific OS design problems and find solutions to them.							
	4. Be able to implement in C or assembly different OS components and system							
	calls.							
	5. Be able to work in team and manage relatively complex software projects.							

8. Contents

o. Contents	1		
8.1 Lectures	Hours	Teaching methods	Notes
General structure of an OS. Possible OS structures (monolithic,			
layered, micro-kernel, virtual machine, exokernel), its components,	2		
their functionality, role, interconnectivity.],,,	
Process and thread management (1) . Scheduling algorithms. FCFS,	2	(1) use beamer slides,	
SJF, Priority-based, Lottery. Priority inversion.	2	combined with blackboard	
Process and thread management (2) . Scheduling algorithms: RR,	2	illustration;	
MLFQ. Use cases: Solaris, Windows and Linux scheduling policies.	2	(2) interactions with students.	
Synchronization mechanisms (1) . General Design Principles.		(2) interactions with students:	
Hardware mechanisms used for implementation of higher-level	2	ask their opinion relative to the presented subject;	
synchronization mechanisms. Design and implementation of locks,	_	the presented subject,	
semaphores, condition variables. Deadlock avoidance.		(3) give each class a short	
Synchronization mechanisms (2) . Linux and Windows Use Cases. The		evaluation test; let students	
synchronization mechanisms provided by Linux and Windows. The	2	discuss and argue each other	
way they are implemented.		their solution; give them the	
Synchronization mechanisms (3) . Deadlock. Deadlock avoidance,	2	good solution and let them	
prevention and detection algorithms.		evaluate their own one;	
Process management (1) . Definition of the process concept, system		evaluate their own one,	
call mechanism and possible implementations, handle (file	2	(4) propose 2-3 interesting	
descriptor) management, basic system calls for process management.		study cases of OSes to be	
Process management (2) . Process memory address space structure,		prepared and presented by	
argument passing on the stack, process creation strategies, multi-	2	students;	
threading support.			
Memory management (1). General aspects, design and		(5) students are invited to	
implementation alternatives of different memory management	2	collaborate in research	
techniques and mechanisms: contiguous allocation, segmentation,	_	projects.	
and paging.		13 - 1.00	
Memory management (2). Paging specific problems like page table	2		
hierarchical structure, memory sharing, page tables for Intel			

architecture.		
Memory management (3) . Virtual memory's design and implementation aspects: swapping and lazy loading. Page replacement algorithms.	2	
File systems (1) . General Design Aspects. Design and implementation alternatives of file systems concepts (files, directories), storage space management. Advantages and disadvantages.	2	
File systems (2). Linux and Windows File Systems. Design and implementation of Ext2 and NTFS.	2	
Security aspect. Subject review. Basic security aspects design. Overview of all presented subjects.	2	

- 1. A. Silberschatz, G. Gagne, P. B. Galvin, Operating Systems Concepts, 7th edition, Wiley, 2005, ISBN 978-0-471-69466-3
- 2. A. Tanenbaum, A. Woodhull. *Operating Systems Design and Implementation*. 3rd edition, Prentice Hall, 2006, ISBN: 0131429388
- 3. Daniel Pierre Bovet, Understanding Linux Kernel, O'Reilly & Associates, 2001, ISBN 0-596-00002-2.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Introduction . Presentation of the lab / project OS (Pintos or HAL9000).			
OS Debugging. Techniques and tools to debug an OS.		(1) students are presented a	
Thread management. Support for managing multiple executions inside the OS kernel.		very brief overview of the	
Synchronization mechanisms. Implementation of locks, semaphores		most important and difficult	
and condition variables.		aspects of the working	
Scheduling algorithms. Round-Robin, priority-based, multi-level		subject;	
feedback queue (MLFQ).		(2) students are given at the	
User application support (1). System call mechanism. Learn the way		beginning of each class a	
the system calls are implemented and used. Basic system call		short evaluation quiz;	
handling in the OS kernel.		(3) students are given a	
User application support (2). Basic memory management.		hands-on tutorial to practice	
Implementation of basic system calls.		·	
User application support (3). Multi-threaded application support.		with working subject's	
Virtual memory (1). Lazy-loading mechanisms.		aspects and to solve problems	
Virtual memory (2). Memory-mapped files.		(4) students are given	
Virtual memory (3). Swapping and page-replacement algorithms.		challenging problems for	
File system (1). Basic aspects of file implementation.	-	extra credit;	
File system (2). Basic aspects of directory implementation.			
Lab examination.	-		

Bibliography

- 1. Lecture slides and laboratory text and support at http://moodle.cs.utcluj.ro/
- 2. Pintos and HAL9000 manual.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

OS knowledge is a fundamental requirement in the CS field. The OSD course presents techniques for hardware and software resources management, which are applicable on any complex management software application. Besides, it provides students detailed knowledge about modern OSes' internals, making them capable of developing more efficient applications. We follow the ACM curricula guide. OSD course's curriculum also maps the IT companies expectations, especially those dealing with direct access to OS services or developing kernel drivers or modules. Such companies are, for instance, system and data security and antivirus detection companies. Usually the teachers in charge of lab classes are former graduate students of our CS program with consistent experience in industry, in companies like those mentioned above. They are permanently consulted regarding the OS course curriculum and its applicability in real projects in industry.

Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Students must understand fundamental OS structure and design alternatives and be able to explicitly describe it. They must also be able to apply their knowledge to give solutions to specific OS design problems.	Oral examination. Detailed discussion about design alternatives of different OS components.	0.67
Seminar			
Laboratory Project	Students must be able to develop different OS components writing code in C and assembly.	Lab: implementation of different problems in the lab OS. Project: presentation of design and implementation solutions	0.33

Minimum standard of performance:

Students must attend minimum **9 lecture classes** to be allowed to take the exam in the regular exam session. Students must attend minimum **7 lecture classes** to be allowed to take the exam in any re-examination sessions. Less than 7 attended lecture classes leads to the interdiction to take any course re-examination in the university year the course is taught.

Students must attend minimum **12 lab classes** to be allowed to take the exam in the regular exam session. Students must attend minimum **10 lab classes** to be allowed to take the exam in any re-examination sessions. Less than 10 attended lab classes leads to the interdiction to take any lab re-examination in the university year the course is taught.

Students must submit solutions for **at least 3 project assignments** (from the total no of 6 assignments) and receive at least 5 for each submitted assignment.

Students are allowed to take the final course examination only after passing the lab and project examination.

Be able to describe the internal aspects of the fundamental OS design principles, like locks, priority-based and RR scheduling, system calls, paging, virtual memory.

Be able to write functional C code that pass at least one test from the provided test set.

Course responsible Assoc.prof.dr.eng. Adrian Colesa

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	47.2

2. Data about the subject

2.1 Subject name			User Interface Design				
2.2 Course responsible/lecturer			Prof.dr	Prof.dr.eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro			
2.3 Teachers in charge of seminars/		Assoc.prof.dr.eng. Ştefănuţ Teodor, teodor.stefanut@cs.utcluj.ro,					
laboratory/ project	S.I.		S.l.dr.eng. Sabou Adrian, adrian.sabou@cs.utcluj.ro				
2.4 Year of study	IV	2.5 Sem	ester	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)			
2.7 Cubinet estamon	DF -	fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DS		
2.7 Subject category DI – Impusă, L		00p – o _l	Op – opțională, DFac – facultativă				

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars		Laboratory	2	Project	1
3.2 Number of hours per semester	70	of which:	Course	28	Seminars		Laboratory	28	Project	14
3.3 Individual study:										
(a) Manual, lecture material	and no	tes, biblio	graphy							40
(b) Supplementary study in the library, online and in the field					10					
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						20				
(d) Tutoring					6					
(e) Exams and tests					9					
(f) Other activities:										0
3.4 Total hours of individual study	suma	(3.3(a)3.	3(f)))		85					
						_				

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	85
3.5 Total hours per semester (3.2+3.4)	155
3.6 Number of credit points	6

4. Pre-requisites (where appropriate)

4.1 Curriculum	Computer programming (C or Java); Computer Assisted Graphics
	Software Engineering
4.7 Competence	The fundamental methodology for the development of software applications

5. Requirements (where appropriate)

5.1. For the course	Projector, computer
5.2. For the applications	Laboratory attendance is mandatory
	Study of laboratory materials from the server

6.1 Professional competences	C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (6 credite) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator C5.2 - Using interdisciplinary knowledge for adapting the computing system to
	the specifc requirements of the application field C5.3 - Using fundamental principles and methods for ensuring the security, the

	c5.4 - Proper utilization of the quality, safety and security standards in the field of information processing c5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
6.2 Cross competences	N/A

7.1 General objective	Study and experiment the methodology of interactive software applications development. Study Human-Computer interaction techniques.
7.2 Specific objectives	 Apply the user centered software development methodology Study and experiment the techniques that are specific to the flexible methodology of the development of interactive applications and graphical user interfaces Implementation of new and efficient human-computer interaction techniques Usability evaluation in interactive applications

8. Contents

Hours	Teaching methods	Notes
2		
2	New multimedia	
2		
2	will be used in classes.	During the
2	The course is	semester and
2	interactive and	before each
2	includes	exam there
2	demonstrations that	are a few
2	exemplify different	preparation
2	user interaction	hours
2	•	planned.
2	•	
2	methodology.	
2		
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 New multimedia 2 teaching approaches will be used in classes. The course is interactive and includes demonstrations that exemplify different user interaction techniques and the software development methodology.

Bibliography

- 1. Shneiderman B.: "Designing the User Interface. Strategies for Effective Human Computer Interaction", Addison-Wesley, 1992.
- 2. Galitz W.O.: "The Essential Guide to User Interface Design". John Wiley & Sons, 1997.

In virtual library

1. Course resources, http://cgis.utcluj.ro/teaching/

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory			
Best practice in UI development	2		
Introduction into HTML	2		
Basic notions of CSS formatting	2		
User interaction through JavaScript	2	Documentation and	
Intermediate knowledge assessment	2	examples will be	
Best practice in Mobile Applications development	2	available to the	
Introduction in Android	2	students, prior to the	
UI layout best practices. List controls.	2	laboratory classes, on	
UI elements for advanced user interactions	2	a dedicated server.	
Intermediate knowledge assessment	2	The students will work	
Introduction in Windows Mobile	2	independently but will	
UI layout best practices. List controls.	2	also be assisted by the	
UI elements for advanced user interaction	2	teacher.	
Final knowledge assessment	2		

Project			
Project proposal: subject, methodology, phases, organization, project	1		
contents, project evaluation	1		
Project definition. Evaluation report	1		Each student
Task description and analysis	1		will have to
Low fidelity prototyping, and scenarios	1		develop a
Cognitive walkthrough	1	Documentation and	specific
Heuristic evaluation	1	examples will be	project based
Prototyping plan	1	available to the	on the
Prototype codification	1	students on a	knowledge
User test cases	1	dedicated server.	acquired at
Prototype evaluation and evaluation reports	1		the
Iterative enhancement of the prototype	1		laboratory
Final user interface development	1		hours.
Document writing	1		
Project presentation and evaluation	1		

1. Teodor Ștefănuț, Dănuț Mihon, Victor Bâcu, Dorian Gorgan. *Proiectarea interfețelor utilizator - Îndrumător de laborator*, Editura U.T. PRESS Cluj-Napoca, ISBN 978-606-737-068-3, http://biblioteca.utcluj.ro/, 2015.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the user centered methodology for the development of interactive software applications and graphical interfaces. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The written exam evaluates the understanding of the information presented in classes and the ability to apply this knowledge.	Evaluation is performed through written examination.	60% (E)
	The activity in class evaluates the active involvement of the students in the teaching process and their participation to the discussions, debates and other class activities during the entire semester.	Evaluation is performed through a very short tests.	10% (AC)
Laboratory	Laboratory assessment evaluates the	Evaluation is performed through	25% (C)
Project	practical abilities obtained by the students. Through project assignments the students have the opportunity to develop their skill in applying the notions, concepts and methods presented in class.	written exam and project assessment.	25% (P)
Minimum standar	d of performance:		
Graduation requir	ement: M≥5, final mark M=0.4*E+0.25*C+0.25*	P+0.1*AC	

Course responsible Prof.dr.eng. Dorian Gorgan

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	48.1

2. Data about the subject

2.1 Subject name			Pattern Recognition Systems			
2.2 Course responsible/lecturer Prof. dr. eng. Sergiu Nedevschi – <u>Sergiu.Nedevschi@cs.utcluj.ro</u>						
2.3 Teachers in charge of s	ers in charge of seminars/ Conf. dr. eng. Florin Oniga, Sef lucrari Raluca Brehar, Sef lucrari Ion Giosan{			n{		
laboratory/ project	tory/ project Florin.Oniga, Raluca.Brehar, Ion.Giosan}@cs.utcluj.ro					
2.4 Year of study	IV	IV 2.5 Semester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е		
DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară			DS			
2.7 Subject category DI – Impusă, L		00p – o _l	ρ – opțională, DFac – facultativă			

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars	Laboratory	2	Project	1
3.2 Number of hours per semester	70	of which:	Course	28	Seminars	Laboratory	28	Project	14
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						28
(b) Supplementary study in t	he libr	ary, online	and in th	ne fiel	ld				20
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					28				
(d) Tutoring				4					
(e) Exams and tests				5					
(f) Other activities:									0
3.4 Total hours of individual study	(suma	(3.3(a)3.	3(f)))		85				
					1				

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	85
3.5 Total hours per semester (3.2+3.4)	155
3.6 Number of credit points	6

4. Pre-requisites (where appropriate)

4.1 Curriculum	Image Processing
4.8 Competence	Computer programming, Data structures and algorithms, Probability Theory,
	Artificial Intelligence.

5. Requirements (where appropriate)

5.1. For the course	Blackboard, video projector, computer
5.2. For the applications	Workstations, specific software (Visual Studio, Diblook, OpenCV, Matlab)

6.1 Professional competences	C4 – Improving the performances of the hardware, software and communication systems (2 credits)
	C4.1 - Identifying and describing the defining performance elements of
	hardware, software and communication systems
	C4.2 - Explaining the interaction of the factors that determine the performances
	of hardware, software and communication systems
	C4.3 - Applying fundamental methods and principles for increasing performance
	of hardware, software and communication systems
	C4.4 - Choosing criteria and methods for performance evaluation of hardware,

software and communication systems C4.5 - Developing performance based professional solutions for hardware, software and communication systems **C5** – Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator C5.2 - Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field **C5.3** - Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems C5.4 - Adequate utilization of quality, safety and security standards in information processing C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality **C6** – Designing intelligent systems (2 credits) **C6.1** - Describing intelligent systems' components C6.2 - Using domain-specific tools for explaining the operation of intelligent systems C6.3 - Applying fundamental methods and principles for specifying solutions for typical problems using intelligent systems **C6.4** - Choosing criteria and methods for the evaluation of quality, performances and limitations of information systems **C6.5** - Developing and implementing professional projects for intelligent systems 6.2 Cross competences N/A

7. Discipline objective (as results from the key competences gained)

7.1 General objective	Knowledge, understanding and use of concepts related to pattern recognition.
7.2 Specific objectives	Knowledge, understanding and use of model-based pattern recognition methods using statistical approaches, linear discriminant methods, support vectors, and ensemble of classifiers.
	Knowledge, understanding and use of the specific operations of a pattern recognition system: data preprocessing, dimensional reduction, relevant feature selection, building the prediction model, selection of the optimum model, performance analysis.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Introduction	2		
Probability Review	2		
Bayesian Decision Theory 1	2	Interactive teaching,	
Bayesian Decision Theory 2	2	using oral	
Bayesian Decision Theory Case Studies	2	presentations	
Maximum Likelihood Estimation	2	supported by	
Kernel Density Estimation	2	multimedia tools,	
K Nearest Neighbors Estimation	2	consultations, involving	
Linear Discriminant Functions	2	students in research	
Kernel Methods	2	and development	
Support Vector Machines	2	activities.	
Ensemble Methods	2		
Clustering methods	2		
Feature Selection and Performance Estimation	2		
	•		

Bibliography

- 1. Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Clasification", John Wiley and Sons, 2001.
- 2. C.M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006
- 3. S. Theodoridis, K. Koutroumbas, "Pattern Recognition", 2-nd Edition, Academic Press, 2008.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory	•		
Introduction	2		
Least Mean Squares Line Fitting	2		
RANSAC – fitting a line to a set of points	2		
Hough Transform for line detection	2		
Distance Transform (DT). Pattern Matching using DT	2	Presentation using the	
Probability Density Estimation	2	blackboard and	
K-Means Clustering	2	multimedia tools.	
Principal Component Analysis	2		
K-Nearest Neighbor Classifier	2	Experiments and	
Naïve Bayes Classifier: Simple Digit Recognition Application	2	implementation using	
Linear classifiers. Perceptron algorithm	2	specific software tools	
Adabost with Decision Stumps	2	(MS Visual Studio,	
Support Vector Machine	2	Diblook)	
Lab Assessment	2		
Project		Evaluation of the	
Topic assignment (week 1, 2)	2	design and	
Analyzes, specification and design (week 3,4)	2	implementation	
Presentation of the approach (week 5,6)	2	phases.	
Implementation (week 6,7,8,9,10); Intermediate presentation (week	2		
9,10)			
Evaluation and optimization (week 11,12)	2		
Report elaboration (week 12,13)	2		
Final Presentation (week 13,14)	2		
Bibliography			
S. Nedevschi, "Lecture Notes", ftp.utcluj.ro/pub/users/nedevschi/SRF/			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The subject is part of the Computer Science and Information Technology curriculum, its contents combining fundamental and practical aspects used in the field of pattern recognition. The subject content is correlated with the specific curricula of other Universities, in Romania and abroad, and is evaluated by government agencies (CNEAA and ARACIS). The subject's activities are meant to make the students familiar with the applications and the research directions of the image processing field, helped by the internationally renowned experience of the teachers.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Testing the theoretical knowledge acquired, and the practical abilities of problem solving.	Written exam	50%
Seminar			
Laboratory	Testing the practical abilities of designing	Lab assessment, project	
Project	and implementing solutions to specific problems. Attendance and activity.	assessment	50%

Minimum standard of performance:

Modeling and implementation of solutions to specific engineering problems, using the domain's formal apparatus.

Grade calculus: 25% laboratory +25% project + 50% final exam

Conditions for participating in the final exam: Laboratory ≥ 5, project ≥ 5

Conditions for promotion: grade ≥ 5

Course responsible Prof. dr. eng. Sergiu Nedevschi

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	48.2

2. Data about the subject

2.1 Subject name			Translators design				
2.2 Course responsible/lec	turer		Assoc.prof. dr. eng. Emil Şt. Chifu – emil.chifu@cs.utcluj.ro				
2.3 Teachers in charge of s	emina	ars/	Ing. Mihai Anton Cerghizan				
laboratory/ project							
2.4 Year of study	IV	2.5 Sem	ester	ester 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		Е	
2.7 Cubicat catagony	DF –	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară					
2.7 Subject category DI – Impusă, E		00р – ор	р — opțională, DFac — facultativă				

3. Estimated total time

3.1 Number of hours per week	5	of which:	Course	2	Seminars	Laboratory	2	Project	1
3.2 Number of hours per semester	70	of which:	Course	28	Seminars	Laboratory	28	Project	14
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						30
(b) Supplementary study in the library, online and in the field						15			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						27			
(d) Tutoring						10			
(e) Exams and tests						3			
(f) Other activities:						0			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 85									
3.5 Total hours per semester (3.2+3	3.4)				155				

6

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Formal Languages and Translators, Computer Programming, Data Structures and Algorithms
4.9 Competence	 Basic knowledge of programming and data structures (preferably in the C and Java languages) Concepts of generative grammars and formal languages To know the basic principles in the design of interpretors and translators for languages artificial Basic knowledge of relational databases and web applications

5. Requirements (where appropriate)

5.1. For the course	N/A
5.2. For the applications	Computers, specific software

6.1 Professional competences	C4 - Improving the performances of the hardware, software and communication
	systems (2 credits)
	C4.1 - Identifying and describing the defining elements of the performances of
	the hardware, software and communication systems

	C4.2 - Explaining the interaction of the factors that determine the performances
	of the hardware, software and communication systems
	C4.3 - Applying the fundamental methods and principles for increasing the
	performances of the hardware, software and communication systems
	C4.4 - Choosing the criteria and evaluation methods of the performances of the
	hardware, software and communication systems
	C4.5 - Developing professional solutions for hardware, software and
	communication systems based on performance optimization
	C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity
	of hardware, software and communication systems (2 credits)
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality,
	security and the computing system's interaction with the environment and the
	human operator
	C5.2 - Using interdisciplinary knowledge for adapting the computing system to
	the specific requirements of the application field
	C5.3 - Using fundamental principles and methods for ensuring the security, the
	safety and ease of exploitation of the computing systems
	C5.4 - Proper utilization of the quality, safety and security standards in the field of
	information processing
	C5.5 - Creating a project including the problem's identification and analysis, its
	design and development, also proving an understanding of the basic quality
	requirements
	C6 - Designing intelligent systems (1 credit)
	C6.1 - Describing the components of intelligent systems
	C6.2 - Using domain-specific tools for explaining and understanding the
	functioning of intelligent systems
	C6.3 - Applying the fundamental methods and principles
	for specifying solutions for typical problems using intelligent systems
	C6.4 - Choosing the criteria and evaluation methods for the quality, performances
	and limitations of intelligent systems
	C6.5 - Developing and implementing professional projects for intelligent systems
6.2 Cross competences	N/A

	, , , , , , , , , , , , , , , , , , , ,
7.1 General objective	To know the phases of programming language translators: lexical analysis,
	syntactic analysis, and code generation.
	To master the tree structure representation of XML documents.
7.2 Specific objectives	To know the classes of languages for which efficient translators and
	interpreters can be implemented.
	To know the rules for processing typical statements for interpreters.
	To understand the difference between structure and presentation of
	documents.
	By using the Java language, to implement parsers of type SAX and DOM for
	XML documents containing DTD validation information.
	By using the Java language, to implement XML document transformators, based on XSLT transformations.

8. Contents

or contents			
8.1 Lectures	Hours	Teaching methods	Notes
Descriptive tools: extended Backus-Naur form.	2		
Regular grammars and finite automata: finite automata, state	2	- The main ideas with	
diagrams and regular expressions.	2	multimedia tehniques	
Context-free grammars and pushdown auromata: examples.	2	- Details and examples at the blackboard, in	
Lexical analysis: modules and interfaces (decomposition of the	2	interaction with the	
grammar, lexical analyzer interface), construction of the lexical	2	students	

analyzer (state diagrams, reserved words method).		- There are	
LL parsers: the LL(1) parsing algorithm for extended BNF grammars.	2	consultation hours - Students are invited	
LL parsers: computation of FIRST and FOLLOW sets.	2	to collaborate in	
LL parsers: examples of recursive-descent applications.	2	research projects	
Theoretical results concerning the $LL(k)$ and $LR(k)$ grammars.	2		
LR parsers: LR(0) states, SLR(1) grammars.	2		
LR parsers: LALR(1) grammars.	2		
LR parsers: the LALR(1) algorithm.	2		
LR parsers: shift-reduce transitions, chain production elimination.	2		
LR parsers: LR table compression.	2		
Basic concepts of attribute grammars.	2		

- 4. W.M. Waite and G. Goos, Compiler Construction, Springer-Verlag, 1984.
- 5. I.A. Leţia and E.Şt. Chifu, Limbaje formale şi translatoare, Ed. Casa cărţii de ştiinţă, 1998.
- 6. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, 1986.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
Laboratory	•	•	•
W3C XML Recommendation version 1.0.	2		
Parsing XML documents ("well-formed").	2		
XML document validation using DTD.	2		
XML document validation using XSD.	2	Drief presentation at	
W3C XPath Recommendation version 1.0.	2	Brief presentation at the blackboard,	
W3C XSLT Recommendation version 1.0.	2	examples and	
XSL-FO (XML Stylesheet Language - Formatting Objects) 1.1.	2	•	
XML usage for storing Microsoft Office 2007/2010 documents -	2	exercises implemented and	
Apache POI/XSSF 3.13.		tested on the	
XML Data Binding using JAXB 2.0.	2	computers, followed	
W3C XQuery Recommendation 1.0, XPath & XSLT 2.0.	2	by homework for each	
XML document storage in databases.	2	topic	
eXist-db XML native DBMS 2.2.	2		
XQuery 3.0 and Update extensions in eXist-db	2		
XRX (XForms + REST(ful) + XQuery) Web Application Architecture &	2		
Development in eXist-db.	2		
Project			
Building recursive-descent parsers from extended BNF grammars.	2		
Recursive-descent (RD) applications:.expression evaluator.	2	Brief presentation at	
RD applications: interpreter for a language operating on binary trees.	2	the blackboard,	
RD applications: interpreter for a language operating on lists.	2	implementing and	
RD applications: interpreter for a language operating on matrices.	2	testing the assignment	
RD applications: code generator for an imperative language.	2	on the computer	
RD test.	2		
Dibliography	•	•	

Bibliography

- 1. W3C Recommendations (i.e. Standards) appropriate for each Topic.
- 2. Teach Yourself XML in 21 days, Steven Holzner, SAMS Publishing, 2004.
- 3. XML Pocket Reference, 3rd Edition, Simon St. Laurent, Michael Fitzgerald, O'Reilly Media, 2005.
- 4. I.A. Leţia, D. Marcu, B. Ungureanu, Procesoare de limbaje. Îndrumător de laborator, Universitatea Tehnică din Cluj-Napoca, 1995.

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the principles of efficient design and implementation of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARAIS).

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade	
Course	- Problem-solving skills	Written exam	44%	
	- Attendance, Activity		4470	
Seminar				
Laboratory	- Problem-solving skills	- Assessment of the XML activity,	35%	
Project	- Attendance, Activity	homework, and written exam		
		- Assessment of the RD activity and test	21%	

Minimum standard of performance:

Modelling typical engineering problems using the domain specific formal apparatus.

Grade calculus: 35% lab + 21% project + 44% final exam Conditions for participating in the final exam: Lab \geq 5

Conditions for promotion: grade ≥ 5

Course responsible Assoc.prof.dr.eng. Emil Chifu

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	49.1

2. Data about the subject

2.1 Subject name Marketing							
2.2 Course responsible/lecturer			Lector	Lector dr. Veronica Maier – <u>veronica.maier@enm.utcluj.ro</u>			
2.3 Teachers in charge of seminars/							
laboratory/ project							
2.4 Year of study	IV	2.5 Sem	ester	ster 1 2.6 Type of assessment (E - exam, C - colloquium, V - verification)		С	
2.7 Cubicat actacam	DF -	fundame	undamentală, DD – în domeniu, DS – de specialitate, DC – complementară				
2.7 Subject category	DI – I	OI – Impusă, DOp – opțională, DFac – facultativă					

3. Estimated total time

3.1 Number of hours per week	2	of which:	Course	2	Seminars		Laboratory	Project	
3.2 Number of hours per semester	28	of which:	Course	28	Seminars		Laboratory	Project	
3.3 Individual study:									
(a) Manual, lecture material	and no	tes, biblio	graphy						14
(b) Supplementary study in t	he libra	ary, online	and in th	ne fiel	d				7
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14			
(d) Tutoring							9		
(e) Exams and tests						4			
(f) Other activities:						-			
3.4 Total hours of individual study (suma (3.3(a)3.3(f))) 48									
3.5 Total hours per semester (3.2+3.4) 76									

4. Pre-requisites (where appropriate)

3.6 Number of credit points

4.1 Curriculum	Not the case
4.10Competence	Not the case

5. Requirements (where appropriate)

5.1. For the course	The existence of multimedia equipment
5.2. For the applications	Not the case

6.1 Professional competences	C5 – Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits) C5.1 – Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator
	C5.2 – Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field C5.3 - Using fundamental principles and methods for ensuring the security, the
	safety and ease of exploitation of the computing systems C5.4 – Adequate utilization of quality, safety and security standards in

	information processing C5.5 – Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality
	needs and requirements
6.2 Cross competences	CT1 – Honorable, responsible, ethical behavior, in the spirit of the law, in order to
	ensure the professional reputation (1 credit)

7.1 General objective	Understand, assimilate and use of basic marketing concepts, principles and
	techniques
7.2 Specific objectives	Understand the marketing orientation, the components of the marketing mix,
	the methods and techniques for collecting and processing marketing data, the
	strategic analysis determining the competitive advantage, the market
	segmentation and the buying decision criteria.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Marketing role in big and small companies and in society: to contribute to company prosperity through creating a high value for			
the customers; to make the company responsible on the long range in front of community, society and environment. Marketing specific	2		
activities Marketing concepts (philosophies) in contemporary organizations: Volume? Quality? Sales? Customer satisfaction?	2		
Marketing environment analysis. Micro and macro environment: suppliers, interest groups, customers, economic, demographic, technological, natural, legal and cultural environment	2	multimedia	
Marketing research: research plan, data collection; data analysis quantitative and qualitative techniques; experiments; research report. Marketing information systems	2	presentation, interactivity by exemplifying the	
Marketing strategic planning: creating and maintaining the balance between objectives, resources and market opportunities. Methods of strategic analysis.	2	presented concepts, using the questions- answer method during	
Designing the strategic plan at four levels: company, divisions, strategic units and brands	2	the course, discussing case studies, playing	
Consumer behavior analysis: patterns of behavior	2	thematic strategy	
Buying decision process	2	game, interactive	
Market segmentation. Criteria and methods of market segmentation	2	lectures	
Product policy. Product life cycle. Researching and developing new products	2		
Product strategies for the life cycle stages. Positioning strategies	2		
Pricing. Pricing policy objectives. Pricing and legal constraints. Pricing policies: market penetration and market skimming	2		
Product distribution. Choosing the distribution channels. Managing and controlling the distribution channels	2		
Marketing communication. Communication process. Marketing communication mix: advertising,	2		

Bibliography

- 1. D. Catana, Gh. A. Catana, Fundamentals of Marketing, UTPRES, 2009
- 2. Gh. A. Catana, A. Dobra Constantinescu, Marketing in powerpoint, UTPRES, 2004
- 3. Gheorghe Alexandru Catană, Marketing: filozofia succesului de piaţă,vol. I, Editura Dacia, Cluj-Napoca 2003

Virtual materials

1. D. Catana, Gh. A. Catana, Marketing, 2010 www.marketing.utcluj.ro

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
-			
Bibliography			

_

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

In order to provide the content for the lecture and establish the method of the teaching / learning process the professor organizes meetings with marketers, who speak to students about the needs and expectations of employers in the area.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	The students answer to open ended and closed questions; involvement during the course by preparing and presenting teamwork papers.	Writen exam	100%
Seminar			
Laboratory			
Project			
Minimum standar	d of performance: Requirement for the credits:	N>5	

Course responsible Assist. Prof. Veronica Maier, PhD

^{*}Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

1. Data about the program of study

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Automation and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science and Information Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Computer science/ Engineer
1.7 Form of education	Full time
1.8 Subject code	49.2

2. Data about the subject

2.1 Subject name		Personal and professional development				
2.2 Course responsible/lecturer Dipl. Psy. Dorin Stanciu PhD, Lecturer - <u>ionut.stanciu@dppd.utcluj.ro</u>						
2.3 Teachers in charge of seminars/			-			
laboratory/ project						
2.4 Year of study	IV	2.5 Sem	ester		2.6 Type of assessment (E - exam, C - colloquium, V - verification)	С
2.7 Cubicat actagam	DF -	DF – fundamentală, DD – în domeniu, DS – de specialitate, DC – complementară				
2.7 Subject category DI – Impusă, I			00p – o _l	Op – opțională, DFac – facultativă		

3. Estimated total time

3.1 Number of hours per week	2	of which:	Course	2	Seminars	Laboratory	Project	
3.2 Number of hours per semester	28	of which:	Course	28	Seminars	Laboratory	Project	
3.3 Individual study:								
(a) Manual, lecture material	and no	tes, biblio	graphy					16
(b) Supplementary study in the library, online and in the field						14		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays					14			
(d) Tutoring						-		
(e) Exams and tests					4			
(f) Other activities:					-			
3.4 Total hours of individual study	suma	(3.3(a)3.	3(f)))		48			
						1		

3.4 Total hours of individual study (suma (3.3(a)3.3(f)))	48
3.5 Total hours per semester (3.2+3.4)	76
3.6 Number of credit points	3

4. Pre-requisites (where appropriate)

4.1 Curriculum	-
4.11Competence	Baccalaureate level of instruction and general knowledge
	Beginner literacy with desktop applications, including Internet utilization

5. Requirements (where appropriate)

5.1. For the course	Auditorium or large lecture room. Audio-video installation for on-screen
	presentations (with room speakers). WiFi or cable Internet connectivity.
5.2. For the applications	Auditorium or large lecture room. Audio-video installation for on-screen
	presentations (with room speakers). WiFi or cable Internet connectivity. Writing
	board (classical or interactive) / Flip chart

6.1 Professional competences	C5 - Design, lifecycle management, integration and integrity of hardware,
	software and communication systems (2 credits)
	C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality,
	security and computing system's interaction with the environment and human
	operator
	C5.2 - Using interdisciplinary knowledge for adapting an information system to

	application domain requirements C5.3 - Using fundamental principles and methods for security, reliability and usability assurance of computing systems C5.4 - Adequate utilization of quality, safety and security standards in information processing C5.5 - Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements
6.2 Cross competences	TC1 - Honorable, responsible, ethical behavior, in the spirit of the law, to ensure
	the professional reputation (1 credit)

7.1 General objective	To provide the course graduate with a set of competencies, skills and level of knowledge about him/herself which allows the formation of a competitive advantage and to provide to course graduate with a better understanding of his/her current academic status and curriculum
7.2 Specific objectives	To facilitate domain-specific learning and knowledge acquisition by providing a larger perspective on personal and professional development; To enhance personal determination and academic engagement as a basis for future competitiveness; To allow the course graduate to acquire specific tools and skills needed for personal and professional assessment, engagement, planning, organizing, expression, and networking.

8. Contents

8.1 Lectures	Hours	Teaching methods	Notes
Key-concepts of personal and professional development. Self- concepts, qualities and virtues, self-awareness and self-knowledge (self-assessment versus external evaluations)	2		
Motivation and self-determination. Goals, objectives, interests, needs, desires, ideals, aspirations, expectations and incentives.	2		
Learning and learning styles. Self-directed learning, adult learning and continuous learning (lifelong learning)	2		
Social modelling and key-persons/models. The basics of social learning and the significant others	2		
Rationality, control, self-regulation and decision making. Processes, strategies and decision making tools	2	Interactive lectures:	
Critical thinking and scientific reasoning. Cognitive biases, logical fallacies and cognitive distortions	2	- Exposition - Discourse	
Assertive communication, persuasion and negotiation	2	- Debating	
Significant personal objectives: Qualities and virtues	2	Case studiesProblem-solving	
Significant personal and professional objectives: Health, safety, fulfilment, satisfaction and happiness	2	- Heuristic conversations	
Tools, means and methods for productivity enhancement: Strategic planning, Decision-making, Information management	2	- Role playing	
Tools, means and methods for productivity enhancement: Organization, scheduling, planning and budget management	2		
Tools, means and methods for productivity enhancement: CV building (principles, alternatives, instruments)	2		
Tools, means and methods for productivity enhancement: Social networking, Professional networking (virtual dedicated networks and communities)	2		
Personal and professional development plans. Design and presentation	2		

Bibliography

Study materials: Course synthesis, Lecture presentations, additional multimedia presentations)

 $Aggarwal,\,R.\,S.\,(2000).\,\textit{A Modern Approach to Vernbal \& Non Verbal Reasoning};\,S.Chand.$

Andrews, K. R. (1971). The concept of corporate strategy: Dow Jones-Irwin.

Ariely, D. (2009). Predictably Irrational: The Hidden Forces that Shape Our Decisions: HarperCollins Publishers.

Aspinwall, L. G., & Staudinger, U. M. (2003). *A Psychology of Human Strengths: Fundamental Questions and Future Directions for a Positive Psychology*: American Psychological Association.

Bercovitch, J., Kremenyuk, V., & Zartman, I. W. (2008). *The SAGE Handbook of Conflict Resolution*: SAGE Publications.

Bishop, S. (2013). *Develop Your Assertiveness*: Kogan Page.

Bolt, M. (2004). Pursuing Human Strengths: A Positive Psychology Guide: Worth Publishers.

Cameron, N., & Bogin, B. (2012). Human Growth and Development: Academic Press.

Caputi, P., Viney, L. L., Walker, B. M., & Crittenden, N. (2011). Personal Construct Methodology: Wiley.

Cava, R. (2004). *Dealing With Difficult People: How to Deal With Nasty Customers, Demanding Bosses and Annoying Co-Workers*: Firefly Books, Limited.

Chamorro-Premuzic, T., & Furnham, A. (2005). Personality and Intellectual Competence: Taylor & Francis.

Clark, K. S., Murphy, M. M., & Banas, S. L. (2009). Handling Peer Pressure: Facts On File, Incorporated.

Deutsch, M., Coleman, P. T., & Marcus, E. C. (2011). The Handbook of Conflict Resolution: Theory and Practice: Wiley.

Dreher, J. C., & Tremblay, L. (2009). Handbook of Reward and Decision Making: Elsevier Science.

Dunne, G. (2003). Anger and Conflict Management: Personal Handbook: Personhood Press.

Fells, R. (2012). Effective Negotiation: From Research to Results: Cambridge University Press.

Freeley, A. J. (2012). Argumentation and Debate, 13rd ed: Wadsworth/Cengage Learning.

Gigerenzer, G. (2000). Adaptive Thinking: Rationality in the Real World: Oxford University Press, USA.

Gilbert, D. (2006). Stumbling on Happiness: Knopf Doubleday Publishing Group.

Gilovich, T. (2008). How We Know What Isn't So: Free Press.

Glickman, R. (2002). Optimal Thinking: How to Be Your Best Self: Wiley.

Hammond, J. S., Keeney, R. L., & Raiffa, H. (1999). *Smart Choices: A Practical Guide to Making Better Decisions*: Harvard Business School Press.

Haslam, N. (2007). Introduction to Personality and Intelligence: SAGE Publications.

Hunter, D. (2013). A Practical Guide to Critical Thinking: Deciding What to Do and Believe: Wiley.

Johnson, G., & Whittington, R. (2009). Fundamentals of Strategy: Pearson Education, Limited.

Kahneman, D. (2011). Thinking, Fast and Slow: Farrar, Straus and Giroux.

Kuhn, D. (2009). Education for Thinking: Harvard University Press.

Larson, C. U. (2009). Persuasion and Responsibility: Reception and Responsibility: Cengage Learning.

Lau, J. Y. F. (2011). An introduction to critical thinking and creativity: Think more, think better. Hoboken, N.J.: Wiley.

Lilley, R. (2013). Dealing with Difficult People: Kogan Page.

Lopez, S. J. (2008). Positive Psychology: Discovering human strengths: Praeger.

Macnamara, J. (1986). A Border Dispute: The Place of Logic in Psychology: A Bradford Book.

MTD Training. (2010). Dealing with Conflict and Complaints: MTD Training & Ventus Publishing ApS.

Mynatt, J. (2009). Encyclopedia of Management: Gale.

Narvaez, D., & Lapsley, D. K. (2009). *Personality, Identity, and Character: Explorations in Moral Psychology*: Cambridge University Press.

Oliver, D. (2010). How to Negotiate Effectively: Kogan Page.

Peterson, C., & Seligman, M. E. P. (2004). *Character Strengths and Virtues: A Handbook and Classification*: Oxford University Press, USA.

Raiffa, H., Richardson, J., & Metcalfe, D. (2002). *Negotiation Analysis: The Science and Art of Collaborative Decision Making*: Belknap Press of Harvard University Press.

Rechner, A. (2009). The in Crowd: Dealing with Peer Pressure: Compass Point Books.

Schick, T., & Vaughn, L. (2013). How to Think About Weird Things: Critical Thinking for a New Age: McGraw-Hill Education.

Seligman, M. E. (2011). Learned Optimism: How to Change Your Mind and Your Life: Knopf Doubleday Publishing Group.

Smith, J. C. (2011). Pseudoscience and Extraordinary Claims of the Paranormal: A Critical Thinker's Toolkit: Wiley.

Staley, C. C. (2007). Focus on college success. Boston, MA: Wadsworth Cengage Learning.

Stanciu, I. D. (2013). Raţionalitate şi control în autoreglarea învăţării la studenţi. Modelare conceptuală şi intervenţii experimentale de validare. Cluj-Napoca: Presa Universitară Clujeană.

Stanovich, K. E. (2009). Decision making and rationality in the modern world: Oxford University Press.

Sternberg, R. J., & Zhang, L. (2001). Perspectives on Thinking, Learning, and Cognitive Styles: Taylor & Francis.

Tavris, C., & Aronson, E. (2008). *Mistakes Were Made (But Not by Me): Why We Justify Foolish Beliefs, Bad Decisions, and Hurtful Acts*: Houghton Mifflin Harcourt.

van den Brink-Budgen, R. (2000). *Critical Thinking for Students: Learn the Skills of Critical Assessment and Effective Argument*: How To Books.

Zhang, L., Sternberg, R. J., & Rayner, S. (2012). *Handbook of Intellectual Styles: Preferences in Cognition, Learning, and Thinking*: Springer Publishing Company.

8.2 Applications – Seminars/Laboratory/Project	Hours	Teaching methods	Notes
-			

*Se vor preciza, după caz: tematica seminariilor, lucrările de laborator, tematica și etapele proiectului.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

By completing this course, the course graduate is expected to have acquired a series of specific and general declarative and procedural knowledge, as well as have built a series of competencies, which, in their togetherness contribute to an increased capacity to find employment, communicate professionally and informally, collaborate and work closely with other professionals and non-professional, and an increased ability to promote and capitalize upon personal and professional traits and activities.

10. Evaluation

Activity type	Assessment criteria	Assessment methods	Weight in the final grade
Course	Standardized written test with multiple choice questions. Collaborative and individual semester projects. Collaborative and individual homework. Assessment criteria include: accuracy/precision, completeness, fluency, and relevance	Written test Duration: 1 hr. Individual portfolio	60% 40%
Seminar			
Laboratory			
Project			

Minimum standard of performance:

The total weighed score exceeds the equivalent of 5/10 of the final grade.

Each assessment exceeds 50% of the allotted grading.

Course responsible DPsy. Dorin Stanciu PhD, Lecturer