1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	37.

2. Data about the subject

2.1	Subject name					Struc	cture of Comp	outer Systems			
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr. eng. Gheorghe Sebestyen –					
				Gheorghe.Sebestyen@cs.utcluj.ro							
2.4	2.4 Teachers in charge of applications			S.I.dr.eng. Anca Hangan, As.dr.eng. Madalin Neagu, drd. Vlad							
						Micle	ea				
2.5	Year of study	Ш	2.6	Semester	6	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	plica s	tion	Lectur e	Арр	olicat s	ion	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	L	Ρ		S	L	Ρ			
6	Structure of Computer Systems	2	-	2	1	28	-	28	14	34	104	4

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							Hours
Manual, lecture material and notes, bibliog	jraphy						14
Supplementary study in the library, online and in the field							4
Preparation for seminars/laboratory works	, homew	ork, re	eports, portfolios, e	ssays	;		13
Tutoring							0
Exams and tests						3	
Other activities							0
3.7 Total hours of individual study		34					

5.7	Total hours of individual study	5
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Digital system design, Computer architecture
4.2	Competence	Understand and operate with basic concepts regarding computer system's hardware

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

	C2 – Designing hardware, software and communication components (5 credits) C2.1 – Describing the structure and functioning of computational, communication and software
	components and systems C2.2 – Explaining the role, interaction and functioning of hardware, software and communication components
es e	C2.3 – Building the hardware and software components of some computing systems using algorithms.
<u> </u>	design methods, protocols, languages, data structures, and technologies C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
	C2.5 – Implementing hardware, software and communication systems
Cross competences	N/A

7.1	General objective	The main goal of the course is to present in an accessible way advanced design methods and techniques used in today's microprocessors and computer systems
7.2	Specific objectives	To study: Methods and metrics for computer performance assessment Advanced CPU designs (pipelining, multicore, parallele and distributed computing) Memory hierarchies: cache memory, virtual memory, new DRAM technologies RISC architecture Parallel computers architectures – hardware issues and solutions

8. Contents

8.1. L	Lecture (syllabus)	Teaching methods	Notes
1	Introduction. Computer Performance Parameters and Methods of	Lecture based on	
	Improvement	slides	
2	Computer performance and optimality, Benchmarking	1	
3	The Arithmetical and Logical Unit (ALU)	1	
4	The Central Processing Unit (CPU) – MIPS architecture, pipeline, hazard	7	
	cases		
5	The Central Processing Unit – advance techniques: Scoreboard method, Tomasulo's algorithm, Branch prediction techniques		
6	The Central Processing Unit – multi-core systems	1	
7	Microprocessors – basic components and advanced implementations	1	
8	Memory System – memory technologies (SRAM, DRAM) and design	1	
	principles		
9	Memory Hierarchies – cache and virtual memory		
10	Interconnection Systems – serial and parallel synchronous and		
	asynchronous buses, multipoint interconnections		
11	Parallel Computer Architectures - different levels of parallel execution		
12	RISC Architectures – principles and implementation examples		
13	Distributed Computing – GRID and Cloud Systems		
14	Technological Perspectives in Computer Architectures		
Biblic	graphy		
	1. Gorgan Dorian, Sebestyen Gheorghe, Structura Calculatoarelor, Editura		
	2. Hennessy John, Patterson David, Computer architecture, a Quantitative		
	Baruch, Z. F., Structure of Computer Systems, U.T.PRES, Cluj-Napoca,		1
8.2.	Applications (Laboratory)	Teaching methods	Notes

8.2. /	Applications (Laboratory)	I eaching methods	Notes
1	Measuring the performance of computer systems with benchmarks	Practical	
2	CPU performance monitoring using the Time-Stamp Counter register	designs,	

3	Programming elements in VHDL	experiments and			
4	Design of ALU components	results			
5	FPGA Synthesis	assesment			
6	Introduction to using PicoBlaze microcontroller with the Nexys3 board				
7	Implementation of a MIPS processor in VHDL - 1				
8	Implementation of a MIPS processor in VHDL - 2				
9	Implementation of a pipelined MIPS processor in VHDL				
10	Memory design - 1				
11	Memory design - 2				
12	Advanced Hardware Design Techniques				
13	Design implementations on NEXYS 3 board				
14	Laboratory Colloquy				
and i imple	cs for Project Assignments: Implementation of arithmetic circuits; Design mplementation of processors and controllers; Signal Processing; Hardware mentation of DSP and image processing algorithms; Design of I/O aces.				
Biblic 1	Bibliography 1. Laboratory works at http://users.utcluj.ro/~ancapop/scs.html				

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment	10.3	Weight in the final		
			methods		grade		
Course	Theoretical knowledge level		Written exam		60%		
Applications	Hardware Design skills		Practical evaluation		40%		
10.4 Minimur	n standard of performance						
Minimum 5 for the Course and for the Application assesment							

Course responsible Prof. dr. eng. Gheorghe Sebestyen

1. Data about the program of study

-		
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	38.

2. Data about the subject

2.1	Subject name				Form	Formal Languages and Translators					
2.2	Subject area				Computer Science and Information Technology						
2.3	3 Course responsible/lecturer			Asso	Assoc.prof. dr.eng. Emil Şt. Chifu – <u>emil.chifu@cs.utcluj.ro</u>						
2.4	Teachers in ch	narge	e of a	applications		Ing. Mihai Anton Cerghizan					
2.5	Year of study		2.6	Semester	6	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	olicat s	tion	Lectur e	Арр	licat s	ion	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	L	Ρ		S	L	Ρ			
6	Formal Languages and Translators	2	-	2	-	28	-	28	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	vidual study							Hours
Man	ual, lecture material and notes, bibliog	graphy						17
Supp	olementary study in the library, online	and in th	e fielc	1				7
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								16
Tuto	ring							5
Exar	ms and tests							3
Othe	er activities							0
3.7	Total hours of individual study		48					
3.8 Total hours per semester 104								
				1				

4. Pre-requisites (where appropriate)

Number of credit points

4.1	Curriculum	Computer Programming, Data Structures and Algorithms
4.2	Competence	Basic knowledge of programming and data structures (preferably in the C language)

4

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Computers, specific software

6. Specific competences

3.9

petences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (2 credits) C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Professional (C3 – Problems solving using specific Computer Science and Computer Engineering tools (2 credits) C3.1 – Identifying classes of problems and solving methods that are specific to computing systems C3.2 – Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 – Applying solution patterns using specific engineering tools and mehods C3.4 – Comparatively and experimentaly evaluation of the alternative solutions for performance optimization C3.5 – Developing and implementing informatic solutions for concrete problems
Cross competences	N/A

		source (as results in the key competences games)
7.1	General objective	 To know the phases, components, and algorithms used by typical language translators. To provide a formal basis for the development of concepts relating to lexical and
		syntactic processors in translators.
7.2	Specific objectives	 To know the underlying formal models such as finite state automata and push-down automata, and to understand their connection to language definition through regular expressions and grammars.
		 To understand the relationships between formal descriptions of the automata in the formal language theory and their practical implementations as lexical and syntactic analyzers in translators.
		 To know the classes of languages for which a deterministic parser can be implemented. To describe the syntax of languages to be implemented by using grammars and regular expressions. To design, develop and test a software project, by utilizing specialized software tools (parser generators), in order to arrive at a translator for an artificial language. To master and control the phenomena of ambiguity and nondeterminism (conflicts) which occur when using parser generators and lexical analyzer generators.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Descriptive tools: strings and rewriting systems, grammars.	- The main	N/A
2	Descriptive tools: derivations and parse trees.	ideas with	
3	Regular grammars and finite automata: finite automata.	- multimedia tehniques	
4	Regular grammars and finite automata: state diagrams and regular expressions.	- Details and examples at	
5	Context-free grammars and pushdown automata: pushdown automata.	the blackboard,	
6	Top-down analysis and LL(k) grammars: LL(k) grammars	in interaction	
7	Top-down analysis and LL(k) grammars: the LL(k) algorithm	students	
8	Top-down analysis and LL(<i>k</i>) grammars: elimination of left recursion, left factoring.	- There are consultation	
9	LL parsers: strong LL(k) grammars, the LL(1) parsing algorithm.	hours - Students are	
10	LL parsers: the LL(1) parsing algorithm, computation of FIRST and FOLLOW		

	sets.	invited to	
11	Bottom-up analysis and LR(k) grammars: situations and closure of a	collaborate in	
	nonterminal, the LR(k) algorithm.	research projects	
12	Bottom-up analysis and LR(k) grammars: the LR(k) algorithm.	projects	
13	LR parsers: the LR(0) parsing algorithm.		
14	LR parsers: LR(0) states.		
	graphy		
1. \	V.M. Waite and G. Goos, Compiler Construction, Springer-Verlag, 1984.		
2. I	A. Leția and E.Şt. Chifu, Limbaje formale și translatoare, Ed. Casa cărții de știin.	ţă, 1998.	
3. A	A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques and Tool	s, Addison-Wesley	<i>י</i> , 1986.
8.2. /	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	Lexical analyzer for C.		
2	The generator of lexical analyzers Lex: Lex source, Lex regular expressions, Lex actions, ambiguous rules, Lex source definitions.		
3	Lex generator: left context sensitivity, examples.		
4	The bottom-up parser generator Yacc: basic specifications, Yacc syntax, actions, lexical analysis, how the parser works.	Brief presentation	
5	Yacc generator: ambiguity and conflicts, precedence and associativity, error handling, the Yacc environment, hints for preparing specifications.	at the blackboard,	
6	Yacc generator: support for arbitrary value types, examples (expression evaluator).	implementing and testing	N/A
7	Yacc/ Lex applications: interpreter for a language operating on lists.	homeworks on	
8	Yacc/ Lex applications: interpreter for a language operating on binary trees.	the computer,	
9	Yacc/ Lex applications::interpreter for a language operating on matrices.	individual	
10	Yacc/ Lex applications: code generator for an imperative language.	assignment on the computer	
11	Yacc/ Lex test		
12	Building recursive-descent (RD) parsers: expression parser.		
13	RD parsers: parser for a language operating on binary trees.		
14	RD parsers: parser for a language operating on lists.	1	
1	ography . The Lex & Yacc Page, http://www.combo.org/lex_yacc_page/ 2. I.A. Letia, D. Marcu, B. Ungureanu, Procesoare de limbaje. Îndrumător d		

Tehnică din Cluj-Napoca, 1995.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the basic principles in the design of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
Course	Problem-solving skillsAttendance, Activity	- Written exam	55%				
Applications	- Problem-solving skills	- Assessment of the Yacc/ Lex activity and test	30%				
	- Attendance, Activity	- Assessment of the RD activity and written exam	15%				
10.4 Minimum standard of performance							
Modeling a typical engineering problems using the domain specific formal apparatus. Obtaining final grade 5							

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	39.

2. Data about the subject

2.1	Subject name				Mana	Management and communication					
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Lect.	Lect. dr. Veronica Maier					
2.4	2.4 Teachers in charge of applications										
2.5	Year of study		2.6	Semester	6	2.7	Assessment	Colloquium	2.8	Subject	DC/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	plica s	tion	Lectur e	Арр	olicat s	ion	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Ρ		S	L	Ρ			
6	Management and communication	2	•	-	-	28	-	-	-	24	52	2

3.1	Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4	Total hours in the teaching plan 28 3.5 of which, course 28 3.6 applications						-	
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliog	Iraphy						6
Supp	elementary study in the library, online	and in th	e fielo	1				7
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						6		
Tutoring								3
Exan	ns and tests							2
Othe	r activities							
3.7	.7 Total hours of individual study 24							
3.8	3 Total hours per semester 52							
3.9	Number of credit points 2							

4. Pre-requisites (where appropriate)

4.1	Curriculum	Not the case
4.2	Competence	Not the case

5. Requirements (where appropriate)

5.1	For the course	The existence of multimedia equipment
5.2	For the applications	Not the case

ssior etenc	 and communication systems (1 credit) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator C5.2 - Using interdisciplinary knowledge for adapting an information system to application domain requirements C5.3 - Using fundamental principles and methods for security, reliability and usability assurance of computing systems C5.4 - Adequate utilization of quality, safety and security standards in information processing C5.5 - Realization of a project including problem identification and analysis, design and development,
Cross competences	 while proving the understanding of the basic quality needs and requirements CT2 – Identifying, describing and conducting processes in the projects management field, undertaking different team roles and clearly and concisely describing own profesional results, verbally or in writing, in Romanian and in an international language. (1 credit)

7.1	General objective	Understand, assimilate and use of basic management and communication concepts, principles and techniques
7.2	Specific objectives	Understand the basic managerial functions, the organization's internal environment, the motivation of people, the organizational communication, communication barriers, increasing communication, overcoming of internal conflicts and the link between leadership and communication.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes				
1	Introduction in management: management concept, managerial functions, the managers, challenges confronting contemporary management	multimedia presentation,	2h				
2	Organization's internal environment: culture and business ethics interactiv						
3	External environment (general and task environment components)	exemplifying the	4h				
4	Planning	presented	2h				
5	Organizing concepts, usi						
6	Coordinating and motivating people	the questions-	2h				
7	Controlling and performance assessment	answer method	2h				
8	Organizational communication (content, functions, types, networks); interpersonal and group communications	during the course, discussing case	2h				
9	Communication barriers	studies, playing	2h				
10	Increasing the effectiveness of communication	thematic strategy	2h				
11	Conflict and conflict management game, interac						
12	Negotiation and assertive communication lectures						
13	Leadership and communication		2h				

Bibliography

- 1. Catana D., Dobra Constantinescu A., Management in Power Point, UTPRES 2004
- 2. Adler, R.B., Elmhorst, J.M, Communicating at work, Principles and practices for Business and the professions, 8th ed., McGraw Hill, 2005
- Becker, E.F., Wortmann, J., Mastering communication at work: how to lead, manage and influence, McGraw Hill Professional, 2009, disponibil pe: http://books.google.ro/books/about/Mastering_Communication_at_Work.html?id=0G6LuTp6XhsC&redir_e sc=v
- 4. Bell, A.H., Smith, D.M., Management communication, 2nd ed., John Wiley&Sons Inc., 2006
- 5. Nicolescu, O. Fundamentele managementului organizației, Editura Universitară, 2008
- 6. Nicolescu, O., Verboncu, I. Managementul organizației, Editura Economică, București, 2007
- 8.2. Applications (Seminars, Laboratory, Projects) Teaching methods Notes

1	Not the case	-	-				
Bibli	Bibliography						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

In order to provide the content for the lecture and establish the method of the teaching / learning process the professor organizes meetings with entrepreneurs, who speak to students about the needs and expectations of employers in the area.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		The students answer to open ended and closed questions; involvement during the course by preparing and presenting teamwork papers.		Written exam		100%
Applications		-		-		-
10.4 Minimu	m stai	ndard of performance				
Requirement for the credits: N>5						

Course responsible Assist. Prof. Veronica Maier, PhD

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	40.

2. Data about the subject

2.1					Imag	Image Processing					
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof	Prof dr. eng. Sergiu Nedevschi (Sergiu.Nedevschi@cs.utcluj.ro)					
2.4	Teachers in charge of applications			Assoc. Prof. dr. eng. Florin Oniga, Assist. Prof. dr. eng. Ion							
				Giosan, Assist. Prof. dr. eng. Raluca Brehar, {Florin.Oniga,							
						lon.C	Giosan, Raluc	a.Brehar}@cs	s.utclu	ij.ro	
2.5	Year of study		2.6	Semester	6	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	plica s	tion	Lectur e	Арр	olicat s	ion	Individual study	TOTAL	Credit
		[hour	s/v	veek	.]	[h	ours	s / se	mes	ster]		
			S	L	Ρ		S	L	Ρ			
6	Image Processing	2	-	2	1	28	-	28	14	34	104	4

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study						Hours	
Manual, lecture material and notes, bibliography						14	
Supplementary study in the library, online and in the field						3	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14	
Tutoring						0	
Exams and tests						3	
Other activities					0		
3.7 Total hours of individual study 34							

3.7	Total hours of individual study	34
3.8	Total hours per semester	104
3.9	Number of credit points	

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	Computer programming (C++), Data structures and algorithms, Linear
		Algebra, Numerical methods, Special mathematics.

5. Requirements (where appropriate)

5.1	For the course	Blackboard, video projector, computer
5.2	For the applications	Workstations, specific software (Visual Studio, Diblook)

Professional competences	 C6 - Designing intelligent systems C6.1 - Describing the components of intelligent systems C6.2 - Using domain-specific tools for explaining and understanding the functioning of intelligent systems C6.3 - Applying the fundamental methods and principles for specifying solutions for typical problems using intelligent systems C6.4 - Choosing criteria and methods for the evaluation of quality, performances and limitations of information systems
Pr Col	information systems C6.5 - Developing and implementing professional projects for intelligent systems
Cross competences	N/A

7.1	General objective	Understanding the concepts related to digital images, computer vision and image processing. Learning and applying image processing methods, and designing specific applications.
7.2	Specific objectives	 Learning, evaluation and use of image processing specific concepts, algorithms and methods: digital image formats, camera model, statistical analysis, image filtering, image enhancing and restauration, segmentation, measurement. Acquiring the capacity of finding optimal solutions for image processing algorithm implementation, taking into consideration time and hardware constraints. Acquiring the capacity of quantitative and qualitative assessement of results, algorithms and systems for image processing. Learning the use of programming tools and image processing frameworks (Diblook MS MEC OPEN CV)

8. Contents

811	Lecture (syllabus)	Teaching methods	Notes		
1	Computer vision and its applications. Structure and functionality of computer vision systems. Image acquisition systems.	Interactive teaching, using	N/A		
2	Camera model, the image formation process, coordinate transforms, calibration.	oral presentations supported by			
3	Fundamentals of stereovision, stereo configurations, depth computation, epipolar geometry.	multimedia tools, consultations,			
4	Binary image processing: Simple Geometric Properties	involving students			
5	Binary image processing: Labeling, Contour Tracing, Polygonal in research and development				
6	Binary image processing: Mathematical Morphology activities.				
7	Grayscale image processing. Statistical properties. Image quality enhancement.				
8	Grayscale image processing: Convolution and Fourier Transform				
9	Grayscale image processing: Noise in images				
10	Grayscale image processing: Digital filtering.				
11	Grayscale image segmentation: Edge based segmentation				
12	Grayscale image processing: Advanced methods for edge extraction and linking.				
13	Grayscale image processing: Textures.]			
14	Image region segmentation using intensity, color and texture features.]			
D'I. I'.					

Bibliography

1. R. C. Gonzales, R. E. Woods, "Digital Image Processing-Second Edition", 3rd Edition, *Prentice Hall, 2008* 2. R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing Using MATLAB", 2nd ed., *Gatesmark Publishing*, 2009.

3. E. Trucco, A. Verri, "Introductory Techniques for 3-D Computer Vision", *Prentice Hall, 1998.*

4. G. X.Ritter, J.N. Wilson, "Handbook of computer vision algorithms în image algebra", CRC Press, 2001.

5. S. Nedevschi, T. Marita, R. Danescu, F. Oniga, R. Brehar, I. Giosan, S. Bota, A. Ciurte, V. Andrei, Image

1. 5.	Nedevschi, "Prelucrarea imaginilor - Note de curs", ftp.utcluj.ro/pub/users/ne	edevschi/IP_2016/				
	Applications (Laboratory)	Teaching methods	Notes			
1	Getting started with the DIBLook framework					
2	The color model. Color-grayscale and grayscale-black&white conversions	-				
3	The histogram of intensity levels	-				
4	Geometrical features of binary objects	-				
5	Binary objects labeling	Presentation using				
6	Border tracing algorithm.	the blackboard				
7	Morphological operations on binary images and multimedia					
8	Statistical properties of grayscale images tools.					
9	Image filtering in the spatial and frequency domains					
10	Noise modeling and digital image filtering	Experiments and	N/A			
11	Edge detection (1)	implementation				
12	Edge detection (2)	using specific				
13	Region-based image segmentation	software tools (MS				
14	Evaluation	Visual Studio,				
8.2.	Applications (Projects)	Diblook)				
1	Choosing and discussing the project subject (weeks 1 and 2).					
2	Discussing the literature study and the work schedule (weeks 3 and 4).	Evaluation of the				
3	Algorithm design (weeks 5 and 6)	design and implementation				
4	Presentation of algorithm implementation. Intermediary evaluation (weeks	phases.				
	7 and 8).	priases.				
5	Algorithm testing and validation. Quantitative and qualitative evaluation					
	(weeks 9 and 10).					
6	Algorithm optimization (weeks 11 and 12).	4				
7	Final project assessment (weeks 13 and 14).					

Processing - Laboratory Guide", UTPRES, Cluj-Napoca, 2016

Online: http://users.utcluj.ro/~igiosan/teaching_ip.html

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The subject is part of the Computer Science and Information Technology curriculum, its contents combining fundamental and practical aspects used in the field of visual information processing (an ever growing domain). The subject content is correlated with the specific curricula of other Universities, in Romania and abroad, and is evaluated by government agencies (CNEAA and ARACIS). The subject's activities are meant to make the students familiar with the applications and the research directions of the image processing field, helped by the internationally renowned experience of the teachers.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course	Testing the theoretical knowledge acquired, and the practical abilities of problem solving.		Written exam		50 %
Applications	Testing the practical abilities of designing and implementing solutions to specific problems. Attendance and activity.		Lab assessment, project assessment		50 %
10.4 Minimur	n standard of performance	•			
Modeling and apparatus.	implementation of solutions to specific	engine	ering problems, usin	g the do	omain's formal

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	41.

2. Data about the subject

2.1	Subject name			Soft	Software Design						
2.2	Subject area			Com	Computer Science and Information Technology						
2.3	Course responsible/lecturer			Prof.	Prof.dr.eng. Mihaela Dinsoreanu –						
				mihaela.dinsoreanu@cs.utcluj.ro							
2.4	2.4 Teachers in charge of applications				Prof.dr.eng. Mihaela Dinsoreanu						
2.5	Year of study		2.6	Semester	6	2.7	Assessment	exam	2.8	Subject	DS/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	olicat s	tion	Lectur e	Арр	olicat s	tion	Individual study	TOTAL	Credit
		[hour	s/v	veek	.]	[h	ours	s / se	me	ster]		
			S	L	Ρ		S	L	Ρ			
6	Software Design	2	-	2	1	28	-	28	14	34	104	4

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4	Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							Hours	
Manual, lecture material and notes, bibliography							10	
Supplementary study in the library, online and in the field								5
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10	
Tutoring						4		
Exams and tests					5			
Other activities								
3.7	Total hours of individual study		34					
3.8 Total hours per semester 104								

3.8 Total hours per semester	404
	104
3.9 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Programming Techniques, Software Engineering
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	Video projector (compulsory), internet connected computer (optional)
5.2	For the applications	16 internet connected computers

Professional competences	 C3 - Problem solving using specific Computer Science and Computer Engineering tools C3.1 Identifying classes of problems and solving methods that are specific to computing systems C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 Applying solution patterns using specific engineering tools and methods C3.4 Evaluating, comparatively and experimentally, the available alternative solutions for performance optimization C3.5 Developing and implementing software solutions for specific problems
Cross competences	N/A

7.1	General objective	Understand and model requirements, analyse and design appropriate solutions
7.2	Specific objectives	 Identify the most relevant functional and non-functional requirements of a software system and to document them Design and motivate software architecture for (large scale) software systems Recognize and apply major software architectural styles, design patterns, and frameworks Describe a software architecture using various documentation approaches and architectural description languages Generate architectural alternatives for a problem and select among them

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Introduction and basic concepts review	Face-to-Face	
2	Architectural Styles (Structural)	lecture,	
3	Architectural Styles (Distributed)	Powerpoint	
4	Business logic architectural patterns	slides	
5	Data Access and hybrid architectural patterns		
6	Presentation and Concurrency architectural patterns		
7	Midterm exam		
8	Applying Creational Design Patterns		
9	Applying Structural Design Patterns		
10	Applying Behavioral Design Patterns		
11	Class Design Principles (SOLID, GRASP)		
12	Package design Principles		
13	Service oriented architectures		
14	Software Design Quality metrics and final review		
Biblio	graphy		
	Sorton, Essential Software Architecture, Springer, second ed. 2011.		
Tayle Wile	or, R., Medvidovic, N., Dashofy, E., Software Architecture: Foundations, v.	Theory, and Pra	ctice, 201

Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 3rd edition, 2013.

David Patterson, Armando Fox, Engineering Long-Lasting Software: An Agile Approach Using SaaS and Cloud Computing, Alpha Ed.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sornmerlad, and Michael Stal. 2001. Patternoriented system architecture, volume 1: A system of patterns. Hoboken, NJ: John Wiley & Sons. [POSA book] Fowler Martin, Patterns of Enterprise Application Architecture, Addison-Wesley Professional, 2002. Course materials published at https://users.utclui.ro/~dinso/PS2017

oouro			
8.2. A	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	Revision exercises (OOP, UML, testing techniques)	Face-to-Face	
2	Database connections and operations	tutoring,	

3	Architectural styles exercises additional							
4	Assignment 1 presentation and discussion materials							
5	Assignment 1 progress and discussion							
6	XML basics - exercises							
7	Design patterns exercises							
8								
9	Assignment 2 progress and discussion							
10	Class design principles exercises							
11	11 Package design principles exercises							
12	12 Assignment 3 presentation and discussion							
13	Assignment 3 progress and discussion							
14	Assignments catch-up session							
	ography							
	Course materials published at https://users.utcluj.ro/~dinso/PS2017							
	tutorial - docs.oracle.com/javase/tutorial/							
C# tu	itorial – msdn.microsoft.com							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

ACM Curriculum compliant course

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the final
				methods		grade
Course		Ability to understand requirements, analyse alternative solutions and design an appropriate solution		Written exam		60%
Applications		Analyse requirements and alternative solutions, design an appropriate solution and implement it in either java or C#.		Periodic presentations of the required deliverables		40%
10.4 Minimur	n sta	ndard of performance				
Grade of each	n lab	assignment >= 5				
Grade of each	n proj	ect deliverable >=5				
Grade of the f	inal e	exam >=5				

Course responsible Prof.dr.eng. Mihaela Dinsoreanu

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	42.				

2. Data about the subject

2.1	Subject name				Intel	Intelligent Systems					
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr. eng. Letia Ioan Alfred – Ioan.Alfred.Letia@cs.utcluj.ro					
2.4	Teachers in charge of applications					Lect. dr. eng. Razvan Slävescu – Razvan.Slavescu@cs.utcluj.ro					
					Lect. dr. eng. Anca Marginean – Anca.Marginean@cs.utcluj.ro				.utcluj.ro		
2.5	Year of study		2.6	Semester	6	2.7	Assessment	exam	2.8	Subject	DS/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Ар	plicat	tion	Lectur	Арр	olicat	ion	Individual		
		e s		е	S		study	TOTAL	Credit			
		[hours / week.]		[hours / seme		ster]						
			S	L	Ρ		S	L	Ρ			
6	Intelligent Systems	2	-	2	-	28	-	28	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28	
Individual study							Hours		
Manual, lecture material and notes, bibliography							18		
Supplementary study in the library, online and in the field						5			
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								10	
Tuto	ring							6	
Exar	ns and tests							9	
Other activities						0			
3.7	Total hours of individual study		48						
2.9 Total hours par compater 104									

J.O	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Logic Programming, Functional Programming
4.2	Competence	Fundamentals of Computer Programming

5. Requirements (where appropriate)

5.1	For the course	Projector, Computer						
5.2	For the applications	Computers with Linux, Specific Software						

	C6 – Design of intelligent systems (4 credits)
	C6.1 – Describing the components of intelligent systems
al es	C6.2 - Usage of specific instruments of the domain for explaining and understanding the functioning of
ion	intelligent systems
Professional	intelligent systems C6.3 – Application of principles and basic methods for the specification of solutions typical problems using intelligent systems
ofe	intelligent systems
L L L	C6.4 - Choosing criteria and methods for the evaluation of quality, performance and limits of intelligent
	systems
	C6.5 – Development and implementation of professional designs for intelligent systems
ď	N/A
e e	
Cross	
Cross	
6	

7.1	General objective	Knowledge of representation and reasoning of fundamental problems of intelligent systems
7.2	Specific objectives	Fundamental methods for basic representations in intelligent systems: uncertainty, learning, communication

8. Contents

1 2 3	Introduction. Uncertainty: inference using full joint distributions, Bayes' rule and its use.	methods Slides,	
2		Slides	
	Uncertainty: inference using full joint distributions. Bayes' rule and its use.		
3		Algorithms,	
	Probabilistic Reasoning: semantics of Bayesian networks, efficient	Quality of	
	representation, exact inference, approximate.	solutions,	
4	Probabilistic Reasoning over Time: hidden Markov models, dynamic	Exceptions,	
	Bayesian networks.	Limits in the	
5	Making Simple Decisions: utility functions, decision networks, value of	representation of the real world	
	information.		
6	Making Complex Decisions: value iteration, policy iteration, partially		
	observable MDPs, game theory.	_	
7	Learning from Observations: learning decision trees, ensemble learning.		
8	Knowledge in Learning: explanation-based, relevance information,		
	inductive logic programming.		
9	Statistical Learning Methods: hidden variables, instance-based, neural		
	networks, kernel machines.		
10	Reinforcement Learning.		
	Association analysis: frequent itemset generation, rule generation,		
	compact representation of frequent itemsets, alternative methods of		
	generating frequent itemsets, FP-growth algorithm.		
	Communication: syntactic analysis, semantic interpretation.		
	Perception, representation and action in multi-agent systems.		
14	Overview on Intelligent Systems: Present and Future.		
Biblioc	graphy		
1.	. Artificial Intelligence: A Modern Approach: Russell, Norvig, Prentice Hall,	2002	
2.	. Tan, Steinbach, Kumar: Data Mining: Association Analysis, 2004		
8.2. A	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	Introduction to the documentation for the assignment		
2	Studying the documentation for the assignment		
3	Studying the design of the tool	Platform,	
4	Practicing the exercises provided in the archive	Documentation,	
5	Understanding the main parts of the software	- Testing,	
6	Running the system by tracing at high level	- Examples,	
7	Mastering the running of the system and the examples provided	- New examples	
8	Conceptual design of new examples	1	

9	Code for the new examples						
10	0 Testing and debugging the new cases						
11	1 Measuring the performance of the system						
12	2 Documenting the new scenarios						
13	Comparison of the differences between the cases developed and those provided]					
14	Final evaluation of the exercises developed	7					
Bibli	ography						
	1. Various Intelligent Systems Tools from the WWW.						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course outline represents the most known and used one in the world methods for intelligent systems, continuously assessed by the research community in the world regarding its influence and use in software technology.

10. Evaluation

Activity type	10.1	Assessment criteria		Assessment methods	10.3	Weight in the final grade		
Course		Problems and theoretical concepts		Written exam		80%		
Applications		Usage of specific tools on the examples developed and tested by the students		Evaluation in the laboratory		20%		
10.4 Minimur	n stai	ndard of performance			-			
Representation of knowledge and its use in solving specific intelligent systems problems using specific tools								

Course responsible Prof. dr. eng. Leția Ioan Alfred

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	43.				

2. Data about the subject

2.1	Subject name				Prac	Practical Placement					
2.2	Subject area				Com	Computer Science and Information Technology					
2.3	3 Course responsible/lecturer				Asso	Assoc. prof. dr. eng. Tiberiu Marita					
2.4	2.4 Teachers in charge of applications				Inter	Internship supervisors appointed by the faculty					
2.5	Year of study		2.6	Semester	6	2.7	Assessment	Verification	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion	Lectur	Арр	olicat	ion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]		[hours / semeste		ster]						
			S	L	Ρ		S	L	Ρ			
6	Practical Placement	-	-	-	-	-	-	-	-	240	240	8

3.1	Number of hours per week	-	3.2	of which, course	-	3.3	applications	-
3.4	Total hours in the teaching plan	-	3.5	of which, course	-	3.6	applications	-
Individual study								
Manual, lecture material and notes, bibliography								0
Supplementary study in the library, online and in the field								40
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10	
Tutoring							18	
Exams and tests							2	
Othe	r activities							170
3.7	Total hours of individual study		24	0				
3.8	Total hours per semester		24	0				
3.9	Number of credit points			8				

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	N/A

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	N/A

6. Specific competences

F

Professional competences	 C2 Designing hardware, software and communication components (2 credits) C2.1 Describing the structure and functioning of computational, communication and software components and systems C2.2 Explaining the role, interaction and operation of hardware, software and communication components C3.3 Construction of hardware and software components of computing systems using design methods, languages, algorithms, data structures, protocols and technologies C2.4 Metric based evaluation of functional and non-functional characteristics of computing systems C3.5 Implementation of hardware, software and communication components C3.7 Problems solving using specific Computer Science and Computer Engineering tools (2 credits) C3.1 Identifying classes of problems and solving methods that are specific to computing systems C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 Applying solution patterns using specific engineering tools and mehods C3.4 Comparatively and experimentaly evaluation of the alternative solutions for performance optimization
es De	Co.4 Comparatively and experimentally evaluation of the alternative solutions for performance
ž d	optimization
<u> </u>	C3.5 Developing and implementing informatic solutions for concrete problems
L O	 C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits) C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator C5.2 Using interdisciplinary knowledge for adapting an information system to application domain requirements C5.3 Using fundamental principles and methods for security, reliability and usability assurance of computing systems C5.4 Adequate utilization of quality, safety and security standards in information processing C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
Cross competenc	CT2 Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the results from the activity field. (2 credits)

7.1	General objective	Application of fundamental and applied knowledge gained in the projects development within a specialized company or research team (theme set by the project manager)
7.2	Specific objectives	Acquaintance and student involvement in every development stage of a hardware / software / communication project and connected aspects of design activities: - Analysis and documentation - Study and acquaintance with specific design tools - Design, implementation, testing and validation of the project - Preparation of documentations, technical reports - Team work and communication skills - Project management activities

8. Contents

8.1. Leo	ture (syllabus)	Teaching methods	Notes
1	Not applicable	N/A	
Bibliogr	aphy		
8.2. Ap	plications	Teaching methods	Notes
1	 Study / documentation / training / analysis of the potential methodologies and/or technologies preparation of the project specifications implementation and deployment of the hardware or software system product testing and validation 	N/A	

	•	product documenting						
Biblioa	Bibliography							

For the project development, the draft bibliography is the one recommended by the project leader from the company or by the research team at which the implementation is performed and the one resulted in the documenting phase.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline provides education and training of the students at the workplace site, with benefits for both sides. Students are familiarized with the working and professional requirements needed to work in a company, and companies have the opportunity to shape students to facilitate their employment after graduation (to reduce training expenses / training). Also it aims to increase cohesion between academia and employment in a priority area in terms of national and European level in order to improve the skills of employees and to prepare and maintain them in the labor market in a particularly dynamic and competitive domain (mainly existing competition with Eastern European countries and Asia - India and China).

10. Evaluation

Activity type	10.1	Assessment criteria	-	Assessment methods	10.3	Weight in the final grade		
Course		N/A		N/A		N/A		
Applications		Attendance (min 240 h), activity, tutor assessment		Colloquy		100%		
10.4 Minimum standard of performance								
Development of a hardware / software / communication engineering project								

Course responsible Assoc.prof.dr.eng. Tiberiu Marita