1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	30.

2. Data about the subject

2.1	Subject name			Desi	Design with Microprocessors						
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer			Conf. dr. eng. Tiberiu Marita – tiberiu.marita@cs.utcluj.ro							
2.4	.4 Teachers in charge of applications			Conf. dr. eng. Tiberiu Marita – tiberiu.marita@cs.utcluj.ro							
								u@cs.utcluj.ro			
				As. c	rd. eng. Raz۱	/an Itu - <u>Razv</u>	an.Itu	@cs.utcluj.ro			
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	App	olicat	ions	Lecture	Арр	licat	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]								
			S	L	Р		S	L	Р			
5	Design with Microprocessors	2	•	1	1	28	-	14	14	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study								Hours
Manı	ual, lecture material and notes, bibliog	raphy						28
Supplementary study in the library, online and in the field							14	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28	
Tutoring							0	
Exams and tests							4	
Other activities							0	
3.7	Total hours of individual study		74					

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer Architecture, Computer Programming
4.2	Competence	Hardware design, Assembly language programming, C language
		programming

5. Requirements (where appropriate)

5.1	For the course	Black-board/ White-board, projector, computer
5.2	For the applications	Computer, Atmel Studio, Arduino IDE, Arduino & RPi development
		boards, Pmods and several other components, modules, sensors etc.

- C2 Designing hardware, software and communication components (2 credits)
- C2.1 Describing the structure and operation of hardware, software and communication components
- C2.2 Explaining the role, interaction and operation of hardware, software and communication components
- C2.3 Construction of hardware and software components of computing systems using design methods, languages, algorithms, data structures, protocols and technologies
- C2.4 Metric based evaluation of functional and non-functional characteristics of computing systems
- **C2.5** Implementation of hardware, software and communication components
- C2.5 Implementation of hardware, soft C5 Designing, managing the lifetime of and communication systems (3 credits) C5.1 Specifying the relevant criteria resystem's interaction with the environment C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software
 - C5.1 Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator
 - C5.2 Using interdisciplinary knowledge for adapting an information system to application domain requirements
 - C5.3 Using fundamental principles and methods for security, reliability and usability assurance of computing systems
 - C5.4 Adequate utilization of quality, safety and security standards in information processing
 - C5.5 Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements

competences

N/A

7. Discipline objectives (as results from the key competences gained)

	00.00	as results from the key competences gamea)
7.1	General objective	Knowledge, understanding and use of concepts like microprocessor/microcontroller, bus, memory system, data transfer methods, interface circuits and peripheral devices interfacing, analysis and design of microprocessor systems.
7.2	Specific objectives	To achieve the main objective, specific objectives are pursued: Knowledge of microprocessors and microcontrollers features and capabilities: hardware capabilities, instruction set architecture, assembly language, and programming solutions. Knowledge of hardware components used with the microprocessors: electrical and logical characteristics, connection modes. Development of skills to find solutions based on microprocessors or microcontrollers for real problems with average complexity. Acquaintance with microcontroller development boards and their software programming tools.

8. Contents

Bibliography

1. B. B. Brey, "INTEL Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Prentium ProProcessor, Pentium II, III, 4", ed. 7, Prentice Hall, 2005

- 2. S. Nedevschi, "Microprocesoare", Editura UTCN, 1994.
- 3. M.A. Mazidi, S. Naimi, S. Naimi, AVR Microcontroller and Embedded Systems: Using Assembly and C, Prentice Hall, 2010, ISBN 9780138003319.
- 4. M. Margolis, Arduino Cookbook, 2-nd Edition, O'Reilly, 2012.

Online: http://users.utcluj.ro/~tmarita/PMP/PMPcurs.htm

8.2. /	Applications (Laboratory, Projects)	Teaching methods	Notes
Labo	ratory		
1	Introduction to the Arduino boards.		
2	Applications with simple I/O modules	Presentation on	
3	Working with the LCD shield and the interrupt system	the blackboard,	
4	Usage of timers	experiments on	N/A
5	Communication interfaces	microcontroller	
6	Digital sensors. Analogue keypad	development boards (Cerebot) use of specialized IDE design tools	
7	Analogue signals processing.		
8	The "Processing" environment		
9	Usage of DC- and servo-motors		
Proje	octs		
1	Project specification and study	(AVR Studio), involvement of	
2	Project logic design	students in	
3	Project implementation	research /	
4	Project optimization, testing and validation	design.	
5	Project assessment.		

Bibliography

- 1. Atmel ATmega2560 8 bit AVR Microcontroller datasheet, http://www.atmel.com/lmages/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
- 2. Arduino Mega 2560, http://arduino.cc/en/Main/ArduinoBoardMega2560
- 3. Abdul Maalik Khan, AVR Project Book, http://www.digisoft.com.pk/products/avr-project-book
- 4. Mike McRoberts, Beginning Arduino, 2-nd Edition, Technology in Action.
- 5. M. Margolis, Arduino Cookbook, 2-nd Edition, O'Reilly, 2012.

Online: http://users.utcluj.ro/~tmarita/PMP/PMPcurs.htm

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The course is in the Computer and Information Technology field. Its contents combine fundamentals with specific aspects of the used hardware and software tools, accustoming students with the design principles for microprocessor based systems. The course content was discussed with other universities in the country and abroad, and in conjunction with products /development tools offered by companies in Romania, Europe and the USA (e.g. Digilent, Atmel, Arduino, RaspberyPi) and is rated by the Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
Course	Testing theoretical knowledge and problem solving skills	Written exam	50 %
Applications	Practical skills for problem solving and implementation of specific problems for applications design. Attendance and activity	Colloquium, lab. work and project evaluation	50 %

10.4 Minimum standard of performance

Modeling and implementation of typical engineering problems using the theoretical models and applicative tools specific to the domain.

Course responsible Assoc.prof.dr.eng. Tiberiu Marita

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	31.

2. Data about the subject

2.1	Subject name				Logic	Logic Programming					
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	Course responsible/lecturer				Prof.	Prof. dr. eng. Rodica Potolea – Rodica.Potolea@cs.utcluj.ro					
2.4	2.4 Teachers in charge of applications				Sl. dr. eng. Camelia Lemnaru – Camelia.Lemnaru@cs.utcluj.ro						
2.5	Year of study	Ш	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	App	licat	ions	Lecture	Арр	licati	ions	Individual study	TOTAL	Credit
		[hours / week.] [hours / semester]										
			S	L	Р		S	L	Р			
5	Logic Programming	2	1	2	-	28	14	28	-	60	130	5

-							
3.1 Number of hours per week	5		of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							Hours
Manual, lecture material and notes, bibliography							28
Supplementary study in the library, online and in the field							10
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							14
Tutoring							3
Exams and tests							5
Other activities						0	
3.7 Total hours of individual study		60					

3.7	Total hours of individual study	60
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Fundamental Algorithms, Programming
4.2	Competence	Logic

5. Requirements (where appropriate)

5.1	For the course	Whiteboard, projector, computer
5.2	For the applications	Computers, specific software (SICStus Prolog). Mandatory attendance
		of seminars and laboratory works.

	C2 Designing hardware, software and communication components (5 credit points) C2.1 Describing the structure and functioning of computational, communication and software components						
siona	and systems C2.2 Explaining the role, interaction and functioning of hardware, software and communication components						
Profes							
	metrics C2.5 Implementing hardware, software and communication systems						
Cross	N/A						
ا ا							

7. Discipline objectives (as results from the key competences gained)

1.0	solphilic objectives (as	results from the key competences gamea,
7.1	General objective	The main goal of the topic is getting the ability of symbolic processing in general, and logic processing in particular; moreover, acquiring abilities for providing specifications in logic, executable form. Estimating the performance of the solutions designed and implemented in logic formalism.
7.2	Specific objectives	Declarative and procedural semantics Extra-logic operators Meta-programming Data Structures in logic programming. techniques associated with efficiency estimation Incomplete structures, difference lists Types of recursions with advantages and limitations Development of complex applications

5

6

Trees

Searching in trees

Incomplete lists; difference lists

. Lecture (syllabus)	Teaching methods	Notes		
Introduction, first order logic declarative and procedural semantics	Interactive Course. Teaching relying on			
First order logic declarative and procedural semantics (continued)	examples, questions and discussions.			
Negation as failure; Backtracking and cut	Continuous			
Prolog programming techniques	evaluation of			
Prolog programming techniques (continued)	knowledge			
Prolog programming techniques (continued)	aquisition.			
Prolog programming techniques (continued)				
Metalogic predicates				
Extra-logic predicates				
Nondeterministic Programming				
Incomplete data structures; difference lists				
Search techniques				
Search techniques (continued)				
Search techniques (continued)				
liography				
L. Sterling, E. Shapiro, <i>The Art of Prolog</i> , MIT Press, 1994.				
W.F. Clocksin, C.S. Mellish , <i>Programming în Prolog</i> , Springer-Ve	rlag Telos, 1994.			
R. Potolea, <i>Programare Logică</i> , vol 1,U.T.Pres, 2007.		T		
2. Applications (Seminars, Laboratory)	Teaching methods	Notes		
Prolog language	Semiras and hands	Seminars –		
Sets, sorting	on laboratory works	design		
Lists	with specific topics.	solutions to		
Basic operations on lists	Problem solving with	problem,		

tracing and

evaluation.

performance

implementatio

n on board.

Laboratory -

8	Incomplete trees		computer
9	Modeling control structures in Prolog		work.
10	Graphs		(individual)
11	Searching in graphs		
12	Basic graphs algorithms		
13	Metaprogramming		
14	Hands on evaluation	Hands on evaluation	mandatory
D :: ::	•		· · · · · · · · · · · · · · · · · · ·

Bibliography

- 1. Rodica Potolea, Programare Logica, UT Pres, 2007
- 2. T.Muresan, R. Potolea, C. Lemnaru, Resources for the laboratory sessions http://users.utcluj.ro/~cameliav/lp.php
- 3. T. Mureşan, R. Potolea, E. Todoran, A.D. Suciu, *Programare Logică Indrumător de Laborator*, Romsver, 1998.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Classical topic of the Computer Science and Information Technology domain, which develops the ability to express executable specifications in a logic language (standard Prolog, Sictus Prolog). The topic enables the assimilation of knowledge and builds necessary skills to other disciplines (AI family), and useful in fundamental / applied research. Ability to analyze specifications and solutions in a unified manner, following partial and total correctness and efficiency at the same time.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the final
				methods		grade
Course		Problem solving using specific		Partial Exam (PE)		20% +50%
		techniques		(written) + Final		
		·		Exam (FE) (written		
				and / or oral)		
Applications		Problem solving		Practical test (Lab)		30%
				(PC)		
10.4 Minimu	m sta	ndard of performance	•	· · ·	•	•

Grade=0.2*PE+ 0.3*Lab+ 0.5*FE. The condition for participation in the final exam: Lab> = 5. Condition promotion Grade > = 5

Course responsible Prof.dr.eng. Rodica Potolea

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	32.

2. Data about the subject

2.1	Subject name			Functional Programming							
2.2	2.2 Subject area			Com	Computer Science and Information Technology						
2.3	2.3 Course responsible/lecturer			Lect.	Lect. dr. eng. Octavian Pop – Octavian.Pop@cs.utcluj.ro						
2.4	2.4 Teachers in charge of applications			Lect. dr. eng. Octavian Pop – Octavian.Pop@cs.utcluj.ro							
						Lect.	Lect. dr.Camelia Chira – Camelia.Chira@cs.utcluj.ro				
2.5	Year of study	III	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject category	DID/OB

3. Estimated total time

Sem	Subject name	Lecture	App	licat	ions	Lecture	Арр	licati	ons	Individual study	TOTAL	Credit
		[hour	rs / week.]		[hours / semester]							
			S	L	Р		S	L	Р			
5	Functional Programming	2	-	2	-	28	-	28	-	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours	
Manual, lecture material and notes, bibliography							28	
Supplementary study in the library, online and in the field							14	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							28	
Tutoring						4		
Exams and tests								
Other activities								

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Data Structures and Algorithms Course
4.2	Competence	This course assumes no prior knowledge of functional programming, but
		advises at least one year of programming experience in a regular
		programming language such as Java, C, C++.

5. Requirements (where appropriate)

		1 /			
5.1	For the course	Basic notions of programming			
5.2	For the applications	Linux			

Professional competences	C2 Designing hardware, software and communication components (4 credits) C2.1 Describing the structure and functioning of computational, communication and software components and systems C2.2 Explaining the role, interaction and functioning of hardware, software and communication
	components C2.3 Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 Implementation of hardware, software and communication components
Cross	N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Increasing the ability to develop more correct and concise code
7.2	Specific objectives	Writing better code with the concepts introduced by functional programming: high order functions, lazy evaluation, lambda calculus, infinite structure.

8. Contents

functions, mapping.

8.1. L	Lecture (syllabus)	Teaching methods	Notes			
1	Introduction. Programming Paradigms	mourous				
2	Basic concepts of programming in Hugs, ML, Lisp: functions, constants, primitive data types, recursion, tuples, infix operators, evaluation.					
3	Basic concepts: local declarations, polymorphism.	-				
<u> </u>	Lists: list construction, basic operations on lists.	Slides,				
5	Lists: polymorphic equality.	Various student				
6	Lists: list operators (generators, filters, list expressions).	engagement				
7	Trees: alternative data, pattern matching, exceptions, binary trees (list-tree conversions).	techniques New examples				
8	Trees: binary trees (binary search trees, AVL balanced trees, examples (operations on sets)).	Quick individual work (1 minute)				
9	Trees: binary trees (examples (Huffman codes)), propositional reasoner (example).	Homework after each class				
10						
11	Infinite data: lazy evaluation, unbounded objects, circular structures.					
12						
13	Lambda calculus: Lambda notation, conversions, combinators.					
14	Para-functional programming: basic language, mapped expressions, eager expressions.	-				
Biblic	pgraphy	-	•			
	Haskell - A Purely Functional Language, http://www.haskell.org/					
	I.A. Leţia, Programare funcţională, Ed. UTPres, UTCN, 1996.					
	H. Conrad Cunningham, Notes on Functional Programming with Haskell, 200					
	Raul Rojas, A Tutorial Introduction to the Lambda Calculus, FU Berlin, WS-9	1	T			
8.2.	Applications (Laboratory)	Teaching methods	Notes			
1	Lisp objects, form evaluation, primitive Lisp functions.	New examples				
2	Internal representation, control of evaluation, function definition. Recursion and iteration.	Tracing algorithms				
3	Scope of variables, iterative forms. LAMBDA-expressions, higher-order Midterm					

assessment

4	Association lists, properties, arrays and structures. Macrodefinitions,	Miniprojects					
	functions as data, surgery.						
5	Trees in Lisp. Graphs and backtracking.						
6	Pattern matching. Symbolic processing.						
7	Lisp microinterpreter. Review of programming in Lisp, in preparation for						
	the lab test.						
8	Lab test (Programming in Lisp).						
9	ML Lists, Recursion,.						
10	ML type checking						
11	ML Trees						
12	Haskell – High order functions						
13	Haskell -Lazy evaluation, circular lists, infinite lists.						
14	Lab test (Programming in ML and Haskell).						

Bibliography

- 1. I.A. Leţia, E.Şt. Chifu, C. Cenan, Programare funcţională. Îndrumător de laborator, Ed. Casa cărţii de ştiinţă, 1999.
- 2. David S. Touretzky, Common Lisp: A Gentle Introduction to Symbolic Computation, The Benjamin/Cummings Publishing Company,Inc, 1989
- 3. Andrew Cumming, A gentle introduction to ML, Napier University, Edinburgh, 2013

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The content of the class is similar to the contents taught at other international universities. The students are encouraged to identify elements of functional programming in the current practice of IT companies running at the local level.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Understanding functional programming elements, Class participation, Homework		Midterm assessment, Writing exam		60
Applications		Quantity and quality of code in Lisp, Haskell and ML		Midterm assessment, Practical exam		40
10.4 Minimum standard of performance						
Understanding and code writing for the following concepts; Recursion, High Order Functions, Pattern Matching						

Course responsible Lect.dr.eng. Octavian Pop

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	33.				

2. Data about the subject

2.1	Subject name				Softv	Software Engineering					
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr eng. Eneia Todoran – Eneia.Todoran@cs.utcluj.ro					
2.4	Teachers in charge of applications				Assoc.prof. dr. Mitrea Paulina – Paulina.Mitrea@cs.utcluj.ro,						
					Asso	c.prof. dr. en	g. Mitrea Delia	a <u>Deli</u>	a.Mitrea@cs.utcl	uj.ro	
2.5	Year of study	III	2.6	Semester	5	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	App	licat	ions	Lecture	App	licat	ions	Individual study	TOTAL	Credit
		[hours / week.]		.]	[hours / semester]							
			S	L	Р		S	L	Р			
5	Software Engineering	2	ı	1	1	28	•	14	14	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours	
Manual, lecture material and notes, bibliography							25	
Supplementary study in the library, online and in the field							17	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							17	
Tutoring							5	
Exams and tests						10		
Other activities						0		
3.7	Total hours of individual study		74		•			•
0.0	0.0 T. III							

3.7	Total hours of individual study	74	
3.8	Total hours per semester	130	
3.9	Number of credit points		

4. Pre-requisites (where appropriate)

4.1	Curriculum	Object Oriented Programming, Programming Techniques
4.2	Competence	Competences acquired in the above disciplines

5. Requirements (where appropriate)

5.1	For the course	Blackboard, projector, computer
5.2	For the applications	Computers, specific software

- C3 Problems solving using specific Computer Science and Computer Engineering tools (2 credits)
- C3.1 Identifying classes of problems and solving methods that are specific to computing systems
- **C3.2** Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results
- C3.3 Applying solution patterns using specific engineering tools and mehods
- **C3.4 -** Comparatively and experimentaly evaluation of the alternative solutions for performance optimization
- C3.5 Developing and implementing informatic solutions for concrete problems
- C4 Improving the performances of the hardware, software and communication systems (1 credit)
- **C4.1 -** Identifying and describing the defining performance elements of hardware, software and communication systems
- **C4.2 -** Explaining the interaction of the factors that determine the performances of hardware, software and communication systems
- **C4.3 -** Applying fundamental methods and principles for increasing performance of hardware, software and communication systems
- **C4.4 -** Choosing criteria and methods for performance evaluation of hardware, software and communication systems
- **C4.5 -** Developing performance based professional solutions for hardware, software and communication systems
- **C5 -** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- **C5.2 -** Using interdisciplinary knowledge for adapting an information system to application domain requirements
- **C5.3** Using fundamental principles and methods for security, reliability and usability assurance of computing systems
- C5.4 Adequate utilization of quality, safety and security standards in information processing
- **C5.5 -** Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

Cross competences N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	The overall objective of discipline consists in the study and application of systematic, disciplined and quantifiable approaches in software systems development
7.2	Specific objectives	 Study and application of software development processes Understanding the specific activities of software engineering Knowledge of software engineering models Knowledge of specific tools that can assist software engineers in the specification, design and validation process Knowledge of methods for software modeling and performance analysis Application of processes, methods and tools in small to medium-sized software projects

8. Contents

			
8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Introduction and overview of the course		
2	Software development paradigms: basic paradigms ('waterfall', prototyping, reusable components, formal methods), evolutionary paradigms (incremental development, spiral model, concurrent engineering)		
3	Modern processes: the unified process, agile methods and extreme		

	programming
4	Basic activities (specification, development, validation, evolution):
5	concepts, principles, processes
ດ	Developing requirements: domain analysis, techniques for gathering requirements, capturing requirements as use cases
6	Formal specification: formal modeling and analysis, model checking, tools in support of formal methods (PRISM)
7	Modeling with classes: UML class and object diagrams, using design patterns
8	Modeling with classes: the process of developing class diagrams,
	semantics of UML class diagrams, implementing class diagrams in Java
9	Modeling interactions and behavior: UML interaction and state diagrams
10	Modeling software behavior: UML state diagrams, software performance
	modeling and analysis.
11	Architecting and designing software: design principles (increase cohesion,
	reduce coupling), architectural patterns (Layers, Pipe-and-Filter, etc.)
12	Testing and inspecting to ensure high quality: testing techniques
	(equivalence partitioning, path testing) and integration strategies (top-
	down, bottom-up, scenario-based), inspections
13	Use case driven development: use case specifications, analysis, design
	and implementation to realize the use cases, testing the use cases
14	Program specifications: pre and post assertions, well-founded induction, declarative prototyping

Bibliography

- 1. I. Sommerville. Software Engineering (6th, 7th, 8th, 9th, 10th editions). Addison Wesley (2001, 2004, 2006, 2010, 2015).
- 2. T. Lethbridge, R. Laganiere. *Object-Oriented Software Engineering: Practical Software Development using UML and Java* (2nd edition). McGraw-Hill, 2005. http://www.lloseng.com.
- 3. C. Baier, J.P. Katoen, *Principles of Model Checking*. MIT Press, 2008.
- 4. I. Nikolov. Scala Design Patterns. Packt Publishing 2016.
- 5. E.N. Todoran. *Inginerie software: studii in prototipizare si specificare formala*. Mediamira, Cluj-Napoca, 2006.

,							
8.2. Applications (Laboratory)	Teaching methods	Notes					
1 OCSF – an object client-server framework for reuse oriented development	OCSF – an object client-server framework for reuse oriented development						
Simple Chat - an instant messaging system based on OCSF (1)							
3 Simple Chat - an instant messaging system based on OCSF (2)							
4 Using software modeling CASE tools: UML use case, class, interaction, state, component and deployment diagrams							
Using CASE tools for performance software modeling and analysis: PRISM, PEPA (1)	Using CASE tools for performance software modeling and analysis:						
6 Using CASE tools for performance software modeling and analysis: PRISM, PEPA (2)							
7 Test cases design with JUnit	Test cases design with JUnit						
The project class attempts to simulate various aspects of the real world of software engineering. The students define the problem to be solved and the scope of the project under the supervision of the teaching assistant. Working alone is permitted, but they are encouraged to work in teams. The students must employ the paradigms and the software development methods that are presented in the taught course. They are expected to deliver three iterations of the project with predefined deadlines. For a traditional 'waterfall' project the deadlines correspond to requirements specification, design, and the final deliverable.							

Bibliography

- 1. T. Lethbridge, R. Laganiere. *Object-Oriented Software Engineering: Practical Software Development using UML and Java* (2nd edition). McGraw-Hill, 2005. http://www.lloseng.com.
- 6. PRISM manual, 2016. http://www.prismmodelchecker.org/manual/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Software Engineering is a well-established discipline in Computer Science and Information Technology. In this course, students acquire basic knowledge related to software development (paradigms, methods and tools) and learn to apply systematic and quantifiable approaches in the development of software systems. Course content has been developed based on interaction with specialists in Software Engineering from Romania,

Europe (UK, Greece) and Canada and has been rated by Romanian government agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria		Assessment methods	10.3	Weight in the final grade
Course		Problem solving skills		Written examination		75%
Applications		Software design and validation skills		Laboratory colloquium, Project assessment		25%
10.4 Minimui	m stan	ndard of performance				
Development	of a m	nedium size software project using	the sl	cills taught in the So	oftware E	ngineering course

Course responsible Prof.dr.eng. Eneia Todoran

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	34.

2. Data about the subject

2.1	Subject name						Introduction to Artificial Intelligence						
2.2	Subject area					Com	Computer Science and Information Technology						
2.3	Course respon	nsible	e/lec	turer		Prof.	dr. eng. Leţia	loan Alfred -	- Ioan	.Alfred.Letia@cs	.utcluj.ro		
2.4	Teachers in ch	narge	e of a	applications			Assoc. prof. dr. eng. Groza Adrian – Adrian.Groza@cs.utcluj.ro						
						Lect.	dr. eng. Mar	ginean Anca -	- Anc	a.Marginean@cs	.utcluj.ro		
2.5	Year of study	Ш	2.6	Semester	5	2.7 Assessment exam 2.8 Subject DID/OB							
						category							

3. Estimated total time

Sem	Subject name	Lectur e	App	licat	ions	Lecture	Арр	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		[hours / semester]			ster]					
			S	L	Р		S	L	Р			
5	Introduction to Artificial Intelligence	2		2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	Number of hours per week 4 3.2 of which, course 2 3.3 application									
3.4 Total hours in the teaching plan	Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications									
Individual study	Individual study									
Manual, lecture material and notes, bibliog	raphy						18			
Supplementary study in the library, online and in the field										
Preparation for seminars/laboratory works,	home	vork, re	eports, portfolios, es	says			10			
Tutoring							6			
Exams and tests										
Other activities							0			
3.7 Total hours of individual study 48										

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Logic Programming, Functional Programming						
4.2	Competence	Elementary fundamentals of programming						

5. Requirements (where appropriate)

5.1	For the course	Projector, Computer
5.2	For the applications	Computers with Linux, Specific Software

- C3 Problems solving using specific Computer Science and Computer Engineering tools (1 credit)
- **C3.1** Identification of classes of problems and the methods to solve them characteristic of information systems
- **C3.2** Usage of interdisciplinary knowledge, patterns of solutions and tools, experimentation and interpretation of their results
- C3.3 Aplication of solution patterns using engineering tools and methods
- C3.4 Comparative evaluation, including experiments, of alternative solutions, to optimize performance
- C3.5 Development and implementation of computational solutions for concrete problems
- **C5 –** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (1 credit)
- **C5.1** Stating the criteria relevant to quality, security and system interaction with the environment and human operator
- **C5.2** Usage of interdisciplinary knowledge for the adaptation of the informatic system to the requirements of the application domain
- C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C5.4 Adequate utilization of quality, safety and security standards in information processing
- **C5.5** Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements
- C6 Designing intelligent systems (2 credits)
- **C6.1 –** Describing the intelligent systems' components
- C6.2 Using domain-specific tools for explaining the operation of intelligent systems
- **C6.3** Applying the main methods and principles for specifying solutions for typical problems using intelligent systems
- **C6.4** Choosing criteria and methods for the evaluation of quality, performances and limitations of information systems
- **C6.5** Developing and implementing professional projects for intelligent systems

Cross competences

Professional competences

8

N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Knowledge of representation and reasoning of fundamental problems of artificial intelligence
7.2	Specific objectives	Fundamental search methods, Usage of first-order logic and description logics, Basic planning representation and solving methods

8. Contents

8.1. I	Lecture (syllabus)	Teaching	Notes
		methods	
1	Introduction.	Slides,	
2	Intelligent Agents: behavior, environments, structure.	Algorithms,	
3	Solving Problems by Searching: uninformed, searching with partial	Quality of	
	information.	solutions,	
4	Informed Search Methods and Exploration: heuristics, local search	Exceptions,	
	algorithms and optimization problems, local search in continuous spaces.	Limits in the	
5	Constraint Satisfaction Problems: backtracking, local search.	representation of	
6	Adversarial Search: alpha-beta pruning, imperfect, real-time decisions,	the real world,	
	games that include an element of chance.		
7	Logical Agents: knowledge-based agents, propositional logic, effective	7	
	propositional inference.		
8	First-Order Logic.		
9	Inference in First-Order Logic: forward, backward chaining, resolution.		
10	Knowledge Representation.		
11	Description logics: description languages, terminologies, world		
	description, inferences, reasoning algorithms, language extensions		

12	Planning: partial-order planning, planning graphs.		
13	Planning and Acting in the Real World: schedules and resources,		
	hierarchical network planning, conditional planning, execution monitoring		
	and re-planning, continuous planning.		
14	Course Overview.		
Biblio	ography		
	1. Artificial Intelligence: A Modern Approach: Russell, Norvig, Prentice Hall,	2002	
	2. Basic Description Logics: Baader, Nutt, CUP, 2003	,	
8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Introduction to the documentation for the assignment		
2	Studying the documentation for the assignment		
3	Studying the design of the tool		
4	Practicing the exercises provided in the archive		
5	Understanding the main parts of the software		
6	Running the system by tracing at high level	Platform,	
7	Mastering the running of the system and the examples provided	Documentation,	
8	Conceptual design of new examples	Testing,	
9	Code for the new examples	Examples,	
10	Testing and debugging the new cases	New examples	
11	Measuring the performance of the system		
12	Documenting the new scenarios		
13	Comparison of the differences between the cases developed and those provided		
14	Final evaluation of the exercises developed		
Bibli	ography		
	Various Artificial Intelligence Tools from the WWW		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The textbook is one of the most known and used one in the world of the best universities, continuously assessed by the university and research community in the world regarding its influence and use in the software oriented companies.

10. Evaluation

Activity type	10.1	Assessment criteria		Assessment methods	10.3	Weight in the final grade					
Course		Problems and theoretical concepts		Written exam		80%					
Applications		Usage of specific tools on the examples developed and tested by the students		Evaluation in the laboratory		20%					
10.4 Minimur	10.4 Minimum standard of performance										
Representation	on of I	knowledge and its use in solving sp	ecific	problems using speci	fic tool	S					

Course responsible Prof.dr.eng. Ioan Alfred Letia

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	35.

2. Data about the subject

2.1	Subject name						Economic law					
2.2	,						Computer Science and Information Technology					
2.3	Course respon	nsible	e/lect	turer		Asso	Assoc.prof.dr.jur. Roxana Cordos – Roxana.Cordos@mis.utcluj.ro					
2.4	Teachers in ch	narge	e of a	applications		-						
2.5	Year of study	Ш	2.6	Semester	5	2.7 Assessment Colloquium 2.8 Subject DC/OB					DC/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur e	App	olicat	ions	Lecture	Арр	licati	ions	Individual study	TOTAL	Credit
		[hours / week.]		.]	[hours / semester]							
			S	L	Р		S	L	Р			
5	Economic legislation	2	-	-	-	28	-	-	-	24	52	2

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-
Individual study							Hours
Manual, lecture material and notes, bibliogi	raphy						18
Supplementary study in the library, online and in the field							2
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							
Tutoring							2
Exams and tests							2
Other activities							
3.7 Total hours of individual study 24							

	I otal hours of individual study	24
3.8	Total hours per semester	52
3.9	Number of credit points	

4. Pre-requisites (where appropriate)

4.1	Curriculum	Not the case
4.2	Competence	Not the case

5. Requirements (where appropriate)

5.1	For the course	Not the case
5.2	For the applications	Not the case

	N/A			
ofessional npetences				
Profession competent				
ess				
ofe.				
Pro				

CT3 – Demonstrating the spirit of initiative and action for updating professional, economical and
organizational culture knowledge (2 credits)

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Applying the general and specific knowledge of technical culture in
		solving the business issues in this field
7.2	Specific objectives	Knowing the basic legisltion in the field and finding solution for
		different types of problems.

8. Contents

8.1.	Lecture (syllabus)	Teaching	Notes		
		methods			
1	General notions of economic legislation.				
2	The merchants. Commerce acts				
3	Bank operations.				
4	Commercial contracts –general notions				
5	Classification of contracts	T.,			
6	The contract of sale	Modern teaching			
7	The contract leasing.	methods			
8	General rules applied to commercial societies				
9	The constitutive act of a firm				
10	10 Changes in the constitutive act of a firm.				
11	Types of commercial societies.				
12	The insolvency procedure.				
13	The working contract				
14	General notions of economic legislation.				
3ibli	ography		•		
	1. Bacali, L (coord), Antreprenoriat-manualul calificarii, UTPress, 2010 (bib	lioteca UTCN)			
	2 Padu S. Dront commercial completet ou netiuni fundamentale de dront	oivil auro universitor	2005		

- 2. Bodu S., Drept commercial completat cu notiuni fundamentale de drept civil- curs universitar, 2005 (biblioteca UTCN)
- 3. S.Angheni, M.Volonciu, C.Stoica, M.Lostun, Drept comercial, Ed. Oscar Print, Bucuresti, 2000
- 4. S.Carpenaru, Drept comercial, Ed.All, Bucuresti, 2007
- 5. I.L.Georgescu, I.Bacanu, Drept comercial român, vol.II, Ed.Lumina Lex, Bucuresti, 2000

8.2.	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes
1	-		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The students will have the possibility to learn how to put into practice a business idea in the studied domain.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the final
				methods		grade
Course		Colloquium		Written test		100%
Applications						
10.4 Minimum standard of performance						
Grade 5						

Course responsible Assoc.prof.dr.jur. Roxana Cordos

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	36.

2. Data about the subject

2.1	Subject name					Grap	Graphical Processing Systems				
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	.3 Course responsible/lecturer				Prof.	Prof.dr.eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro					
2.4	.4 Teachers in charge of applications					Lect.dr.eng. Bacu Victor, As.eng. Constantin Nandra,					
						{victor.bacu, constantin.nandra}@cs.utcluj.ro					
2.5	2.5 Year of study III 2.6 Semester 5			2.7	Assessment	exam	2.8	Subject	DID/OB		
	-									category	

3. Estimated total time

Se	n Subject name	Lectur e	App	olicat	ions	Lecture	Арр	licati	ions	Individual study	TOTAL	Credit
			[hours / week.] [hours / semester]			ster]						
			S	L	Р		S	L	Р			
5	Graphical Processing Systems	2	-	2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2	
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28	
Individual study								
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field								
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								
Tutoring							3	
Exams and tests								
Other activities								
3.7 Total hours of individual study		/1Ω					•	

	Total hours of individual study	48
	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer programming (C language) Elements of Computer Assisted Graphics
4.2	Competence	Applications development in C programming language, Graphical systems architecture, The graphical processing pipeline

5. Requirements (where appropriate)

- ,					
5.2 For the applications Laboratory attendance is mandatory Study of laboratory materials from the	· · · · · · · · · · · · · · · · · · ·				

C4.1 – Improving the performances of the hardware, software and communication systems (4 credits)
C4.1 – Identifying and describing the defining elements of the performances of the hardware, software and communication systems
C4.2 – Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
C4.3 – Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
C4.4 – Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
C4.5 – Developing professional solutions for hardware, software and communication systems based on performance optimization

N/A

7. Discipline objectives (as results from the key competences gained)

	21001611110 01030011100 (010 1000111	s nom mo key competences games,
7.1	General objective	Study and experiment with the 3D photorealistic algorithms. Development of 2D and 3D graphics applications.
7.2	Specific objectives	 Creation of the graphic model of a 3D scene of objects Implementation and usage of the fundamental 3D graphics algorithms that can be found in the core of a graphic system Development of graphic applications in a high-level programming language (C, C++) based on graphics libraries (ex. OpenGL) Implementation of the main phases of the graphics transformation pipeline, in order to transform a 3D scene into an image.

8. Contents

3.1. Lecture (syllabus)	Teaching methods	Notes
Computational graphics Hidden line and surface removal algorithms. Part 1 Hidden line and surface removal algorithms. Part 2 Jobjects modeling Particles based models Polygonal objects rendering. Part 1 Polygonal objects rendering. Part 2 Illumination models. Local reflection model. Phong model Shadow computation Texture mapping. Part1 Texture mapping. Part2 Global reflection models. Ray-tracing algorithm Global reflection models. Radiosity algorithm Graphical animation	New multimedia teaching approaches will be used in classes. The course is interactive and includes demonstrations that exemplify graphical methods and algorithms.	During the semester and before each exam there are a few preparation hours planned.

Bibliography

- 8. Watt A., "3D Computer Graphics". Addison-Wesley, 1998.
- 9. Watt A., Policarpo F.: "3D Games. Real-time Rendering and Software Technology". Addison-Wesley, 2001
- 10. Akenine-Moller T., Haines E., "Real-Time Rendering". A.K. Peters 2nd edition, 2002.
- 11. Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "Computer Graphics. Principles and Practice". Addison-Wesley Pblishing Comp., 1992.
- 12. Gorgan D., Rusu, D., "Elemente de Grafică pe Calculator". Cluj-Napoca, 1996.

In virtual library

1. Course resources, http://cgis.utcluj.ro/teaching/

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Mathematics for computer graphics	Documentation	Each student
2	Introduction to modern OpenGL	and examples	will have to
3	Basic vertex and fragment shaders	will be available	develop a

4	Debugging methods	to the students,	specific					
5	3D Transformations	prior to the	project based					
6	3D models and textures	laboratory	on the					
7	First project evaluation	classes, on a	knowledge					
8	Lighting model - Part 1	dedicated	acquired at					
9	Lighting model - Part 2	server. The	the					
10	Shadow mapping	students will	laboratory					
11	Second project evaluation	work	hours.					
12	Cube maps and environmental mapping	independently but will also be						
13	Normal mapping	assisted by the						
14	Final project assessment	teacher.						
	Bibliography In virtual library							

In virtual library

1. Curse and practical works, http://cgis.utcluj.ro/teaching/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the fundamentals of 3D graphic systems and algorithms. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		The written exam evaluates the understanding of the information presented in classes and the ability to apply this knowledge.		Evaluation is performed through written exam.		60% (E)
Course activity		The activity in class evaluates the active involvement of the students in the teaching process and their participation to the discussions, debates and other class activities during the entire semester.		Evaluation is performed through a very short tests.		10% (AC)
Applications		Laboratory assessment evaluates the practical abilities obtained by the students. Through homework assignments the students have the opportunity to develop their skill in applying the notions, concepts and methods presented in class.		Evaluation is performed through written and practical exam.		40% (L)
10.4 Minimu	m star	ndard of performance				
Graduation re	eauirei	ment: M≥5, final mark M=0.5*E+0.4*L+0	1*AC			

Course responsible Prof.dr.eng. Dorian Gorgan