
SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer Science/ Engineer

1.7 Form of education Full time

1.8 Subject code 23.

2. Data about the subject

2.1 Subject name Systems Theory

2.2 Subject area Computer Science and Information Technology

2.3 Course responsible/lecturer Assoc. prof. dr. eng. Paula Raica – Paula.Raica@aut.utcluj.ro

2.4 Teachers in charge of applications Conf.dr.ing. Paula Raica, Sl.dr.ing. Iulia Clitan, Asist.dr.ing.
Alexandru Codrean, Ing. Zoltan Nagy

2.5 Year of study

II 2.6 Semester

4 2.7 Assessment exam 2.8 Subject
category

DID/OB

3. Estimated total time

Sem
.

Subject name Lectur
e

Application
s

Lectur
e

Application
s

Individual
study TOTAL Credit

[hours / week.] [hours / semester]

 S L P S L P

4 Systems Theory 2 - 2 - 28 - 28 - 48 104 4

3.1 Number of hours per week 4 3.2 of which, course 2 3.3 applications 2

3.4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications 28

Individual study Hours

Manual, lecture material and notes, bibliography 20

Supplementary study in the library, online and in the field 5

Preparation for seminars/laboratory works, homework, reports, portfolios, essays 20

Tutoring

Exams and tests 3

Other activities

3.7 Total hours of individual study 48

3.8 Total hours per semester 104

3.9 Number of credit points 4

4. Pre-requisites (where appropriate)

4.1 Curriculum Mathematical Analysis_II (Integral calculus and differential equations,
Linear algebra

4.2 Competence Differential equations, complex numbers, Laplace transform, linear
algebra

5. Requirements (where appropriate)

5.1 For the course N/A

5.2 For the applications Reading and understanding of the lecture notes.

6. Specific competences

mailto:Paula.Raica@aut.utcluj.ro

7. Discipline objectives (as results from the key competences gained)

7.1 General objective The general objective of the course is to introduce the fundamental
principles of linear system modeling, analysis and feedback control and
to evaluate feedback control systems with desired behavior.

7.2 Specific objectives The specific objectives are to acquire the knowledge and techniques
related to:
- mathematical system modeling (differential equations, input-output
representation as transfer functions, block diagrams) for simple
applications
- linear system analysis (assessment of stability and performance
properties of linear systems) in time and frequency domains
- design of feedback controllers such as PID, lead and lag
compensators for linear systems using s-domain techniques
- linear sampled-data system representation and analysis

8. Contents

8.1. Lecture (syllabus) Teaching
methods

Notes

1 Introduction to systems theory and control engineering. Intoduction to
system modeling. Linear approximation.

Lecture, visual
presentations,
demonstrations

N/A 2 Input/output models. System response. State-space models.

3 Conversion between transfer function and state space.
Block diagrams.

4 Linear system analysis. 1st and 2nd order systems. Steady-state error.

5 Higher order systems. Dominant poles. Stability of linear continuous
systems.

6 System analysis using root locus.

7 Frequency response. Bode diagrams.

8 Controller design. Lead-lag compensation.

9 System analysis. Applications. Midterm exam.

10 PID – the basic technique for feedback control.

11 Controlability. Observability. State feedback.

12 Sampled-data systems.

13 Digital control systems

14 Controller design – aplications. Sampled-data systems – applications.

Bibliography
1. R. C. Dorf, R. Bishop, “Modern Control Systems”, Addison-Wesley, 2004;
2. K. Ogata , “Modern Control Engineering”, Prentice Hall, 1990.
3. K. Dutton, S. Thompson, B. Barraclough, “The Art of Control Engineering”, Addison-Wesley, 1997
4. William S. Levine (editor), “The Control Handbook”, CRC Press and IEEE Press, 1996

 5. Lecture notes available on the course webpage: http://rocon.utcluj.ro/st

8.2. Applications (Seminars, Laboratory, Projects) Teaching methods Notes

1 Introduction to Matlab. Simulation of dynamical systems Class 4 hours

P
ro

fe
s
s
io

n
a

l

c
o
m

p
e
te

n
c
e
s

C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (4 credits)
C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity,
programming paradigms, and modeling computational and communication systems
C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the
structure and the functioning of hardware, software and communication systems
C1.3 – Building models for various components of computing systems
C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems
C1.5 – Providing a theoretical background for the characteristics of the designed systems

C
ro

s
s

c
o
m

p
e
te

n
c
e
s
 N/A

http://rocon.utcluj.ro/st

2 Linear approximation of differential equations. Transfer functions. System
response.

discussion,
Supervised
exercise solving
using Matlab
Miniprojects –
individul student
reports

4 hours

3 Block diagram models. 1st and 2nd order system analysis. Steady-state
error

4 hours

4 System stability. Root locus 4 hours
5 Frequency response. Bode diagrams 4 hours
6 Lead-lag compensation. PID controllers 4 hours
7 State feedback. Sampled-data systems. 4 hours
Bibliography
1. Paula Raica, “Control Engineering. Exercises”, Editura Mediamira, 2001

2. Lecture notes available on the course webpage: http://rocon.utcluj.ro/st

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

The course content combines theoretical knowledge with applications and focuses on the formulation and
solution of specific problems that may occur in various engineering fields. Application of the control theory
concepts are specific to most of the engineering disciplines. The course level is introductory and the intent is to
motivate and prepare students for further study in related areas and to conduct projects in real-life
applications.

10. Evaluation

Activity type 10.1 Assessment criteria 10.2 Assessment
methods

10.3 Weight in the final
grade

Course Ability to solve exercises related
to linear system modeling and
analysis

 Midterm exam –
writen examination

 40%

 Ability to solve exercises related
to system design and analysis of
sampled-data systems

 Final exam - writen
examination

 60%

Applications Answer simple questions from
the topic of the lab applications

 Lab tests (optional) 30% (optional, but

may contribute to a
higher grade)

10.4 Minimum standard of performance

Solution of simple exercises applying the knowledge and techniques presented in the course.

40% Midterm grade + 60%Final grade + 30%Lab grade > 5

Course responsible Head of department
Conf.dr.ing. Paula Raica Prof.dr.eng. Rodica Potolea

http://rocon.utcluj.ro/st

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer Science/ Engineer

1.7 Form of education Full time

1.8 Subject code 24.

2. Data about the subject

2.1 Subject name Computer Architecture

2.2 Subject area Computer Science and Information Technology

2.3 Course responsible/lecturer S.l.dr.ing. Mihai Negru – Mihai.Negru@cs.utcluj.ro

2.4 Teachers in charge of applications Conf.dr. ing. Florin Oniga, S.l.dr.ing. Mihai Negru, { Florin.Oniga,
Mihai.Negru }@cs.utcluj.ro

2.5 Year of study

II 2.6 Semester

4 2.7 Assessment exam 2.8 Subject
category

DID/OB

3. Estimated total time

Sem
.

Subject name Lectur
e

Application
s

Lectur
e

Application
s

Individual
study TOTAL Credit

[hours / week.] [hours / semester]

 S L P S L P

4 Computer Architecture 2 - 2 - 28 - 28 - 74 130 5

3.1 Number of hours per week 4 3.2 of which, course 2 3.3 applications 2

3.4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications 28

Individual study Hours

Manual, lecture material and notes, bibliography 28

Supplementary study in the library, online and in the field 14

Preparation for seminars/laboratory works, homework, reports, portfolios, essays 28

Tutoring 0

Exams and tests 4

Other activities 0

3.7 Total hours of individual study 74

3.8 Total hours per semester 130

3.9 Number of credit points 5

4. Pre-requisites (where appropriate)

4.1 Curriculum 1. Logic design
2. Digital system design

4.2 Competence Ability to design digital circuits and to implement them in VHDL

5. Requirements (where appropriate)

5.1 For the course blackboard, video projector, laptop

5.2 For the applications desktop/laptop computer, Xilinx ISE / VIVADO, FPGA development
boards

mailto:Mihai.Negru@cs.utcluj.ro

6. Specific competences

P
ro

fe
s
s
io

n
a

l

c
o
m

p
e
te

n
c
e
s

C2 – Designing hardware, software and communication components (5 credits)
C2.1 – Describing the structure and functioning of computational, communication and software
components and systems
C2.2 – Explaining the role, interaction and functioning of hardware, software and communication
components
C2.3 – Building the hardware and software components of some computing systems using algorithms,
design methods, protocols, languages, data structures, and technologies
C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using
specific metrics
C2.5 – Implementing hardware, software and communication systems

C
ro

s
s

c
o
m

p
e
te

n
c

e
s

N/A

7. Discipline objectives (as results from the key competences gained)

7.1 General objective Knowing and understanding the concepts of organization and
functioning for central processing units, memories, input/output, and
using these concepts for design.

7.2 Specific objectives  Applying methods for representation and design at system
level for digital circuits

 Instruction Set Architecture (ISA) specification

 Writing simple programs in assembly languages and
machine code

 Specification, design, implementation, and testing of Central
Processing Units (CPU) – micro architecture – data path –
command units

 Understanding memory organization and I/O operations

 Understanding modern trends in computer architectures

8. Contents

8.1. Lecture (syllabus) Teaching methods Notes

1 Introduction

Oral presentation
backed up by
multimedia
equipment, interactive
communication,
blackboard problem
solving

2 High-Level Synthesis

3 Instruction Set Architecture (ISA)

4 CPU Design - Single Cycle CPU

5 Computer Arithmetic and Simple Arithmetic Logic Units

6 CPU Design - Multi Cycle CPU Data path

7 CPU Design - Multi Cycle CPU Control

8 CPU Design – Pipelined CPU

9 Advanced Pipelining – Static and Dynamic Scheduling of the
Execution

10 Branch Prediction

11 Superscalar Architectures

12 Memory

13 I/O and Interconnection Structures

14 Problem solving

Bibliography
1. D. A. Patterson, J. L. Hennessy, “Computer Organization and Design: The Hardware/Software

Interface”,5th edition, ed. Morgan–Kaufmann, 2013.
2. D. A. Patterson and J. L. Hennessy, “Computer Organization and Design: A Quantitative Approach”,5th

edition, ed. Morgan-Kaufmann, 2011.
3. Vincent P. Heuring, et al., “Computer Systems Design and Architecture”, Addison-Wesley, USA, 1997.
4. A. Tanenbaum, “Structured Computer Organization”, Prentice Hall, USA, 1999.
5. MIPS32 Architecture for Programmers, Volume I: “Introduction to the MIPS 32™ Architecture”.
6. MIPS32 Architecture for Programmers, Volume II: “The MIPS 32™ Instruction Set”.

Online bibliography
M. Negru, F. Oniga, S. Nedevschi, Lecture slides http://users.utcluj.ro/~negrum

8.2. Applications (Laboratory) Teaching methods Notes

1 Introduction in the Xilinx ISE environment and the FPGA
development board

Blackboard quick
overview of key
issues, exercises,
experimenting with
FPGA development
boards with
specialized IDEs for
circuit design and
implementation
(Xilinx ISE)

2 Design and Implementation of Combinational CPU Components

3 Design and Implementation of Sequential CPU Components

4 Design of a Single Cycle CPU 1 (MIPS)

5 Design of a Single Cycle CPU 2 (MIPS)

6 Design of a Single Cycle CPU 3 (MIPS)

7 Design of a Single Cycle CPU 4 (MIPS)

8 Midterm practical evaluation on the FPGA board

9 Pipelined CPU Design

10 Pipelined CPU Design

11 Pipelined CPU Design

12 Pipelined CPU interfacing

13 Practical evaluation of the pipelined CPU on the FPGA board

14 Final Tests and Evaluation

Bibliography
Online bibliography

M. Negru, F. Oniga, S. Nedevschi, Laboratory guide http://users.utcluj.ro/~negrum

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

Computer Architecture is one of the fundamental subjects of the Computer Science and Information
Technology field. It combines fundamental and practical aspects used for digital circuits design and
implementation. The content of this subject is harmonized with the specific curricula of other national and
international universities, and is evaluated by the Romanian government agencies (CNEAA and ARACIS). The
practical aspects involve getting familiar with and using development products and tools provided by
companies from Romania, Europe, and USA (ex. Xilinx, Digilent).

10. Evaluation

Activity type 10.1 Assessment criteria 10.2 Assessment
methods

10.
3

Weight in the final
grade

Course Testing the theoretical
knowledge, the ability of
problem solving, presence and
activity

 Written exam 50 %

Applications Practical ability to solve and
implement specific problems
related to processor design,
presence and activity

 Lab exam,
periodical
assessment of
results

 50 %

10.4 Minimum standard of performance

Knowing the fundamental theory of the subject, the ability to design and implement a processor with a reduced
set of instructions.

Course responsible Head of department
S.l.dr.ing. Mihai Negru Prof.dr.eng. Rodica Potolea

http://users.utcluj.ro/~negrum
http://users.utcluj.ro/~negrum

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer Science/ Engineer

1.7 Form of education Full time

1.8 Subject code 25.

2. Data about the subject

2.1 Subject name Fundamental Algorithms

2.2 Subject area Computer Science and Information Technology

2.3 Course responsible/lecturer Prof. dr. eng. Rodica Potolea – Rodica.Potolea@cs.utcluj.ro

2.4 Teachers in charge of applications S.l.dr.eng. Camelia Lemnaru – Camelia.Lemnaru@cs.utcluj.ro

2.5 Year of study

II 2.6 Semester

4 2.7 Assessment exam 2.8 Subject
category

DID/OB

3. Estimated total time

Sem
.

Subject name Lectur
e

Application
s

Lectur
e

Application
s

Individual
study TOTAL Credit

[hours / week.] [hours / semester]

 S L P S L P

4 Fundamental Algorithms 2 1 2 - 28 14 28 - 60 130 5

3.1 Number of hours per week 5 3.2 of which, course 2 3.3 applications 3

3.4 Total hours in the teaching plan 70 3.5 of which, course 28 3.6 applications 42

Individual study Hours

Manual, lecture material and notes, bibliography 21

Supplementary study in the library, online and in the field 16

Preparation for seminars/laboratory works, homework, reports, portfolios, essays 16

Tutoring 8

Exams and tests 9

Other activities

3.7 Total hours of individual study 60

3.8 Total hours per semester 130

3.9 Number of credit points 5

4. Pre-requisites (where appropriate)

4.1 Curriculum Imperative programming languages (C şi / sau Java)
Data Structures and Algorithms

4.2 Competence Acquire the abilities of designing, implementing, testing and evaluating
programs to solve specific problems

5. Requirements (where appropriate)

5.1 For the course Whiteboard, projector, computer

5.2 For the applications Computers/Network of computers, C ++

6. Specific competences

mailto:Rodica.Potolea@cs.utcluj.ro
mailto:Camelia.Lemnaru@cs.utcluj.ro

7. Discipline objectives (as results from the key competences gained)

7.1 General objective  Acquiring modern study of algorithms: design and analysis

7.2 Specific objectives  Learn to identify and design efficient solutions to problems

 Learn methods to evaluate efficiency

 Learn the basic polynomial algorithms

 Learn basic computational complexity

 Algorithms description with focus on control structures

 Learning the correct implementation following the pseudocode

 Efficient implementation of key polynomial algorithms

 Estimation of algorithms’ efficiency: space and processing time

8. Contents

8.1. Lecture (syllabus) Teaching
methods

Notes

1 Mathematical Foundations: Asymptotical notation, Recurrence Whiteboard,
projector,
computer;
Lectures,
discussions,
Q&A sessions

2 Complexity Classes
3 Sorting and Order Statistics

4 Sorting and Order Statistics (continued)
5 Advanced Data Structures : Hash Tables, Trees
6 Advanced Data Structures: Heaps, Disjoint Sets
7 Design and Analysis Advanced Techniques: Dynamic Programming
8 Design and Analysis Advanced Techniques: Greedy Algorithms
9 Design and Analysis Advanced Techniques: Damping Analyze
10 Graphs: Search in a Graph, Minimal Spanning Tree
11 Graphs: Shortest path
12 Graphs: Max Flow
13 Graphs: Bipartite Graphs
14 Learn the basic Complexity sets and representative problems

Bibliography
1. T. Cormen, C. Rleiserson, R. Rivest, C. Stein, Introduction to Algorithms, Second Edition, The MIT Press,
2001

P
ro

fe
s
s
io

n
a

l
c
o
m

p
e
te

n
c
e
s

C3. Problems solving using specific Computer Science and Computer Engineering tools (5 credit points)
C3.1- Identifying classes of problems and solving methods that are specific to computing systems
C3.2 - Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting
their results
C3.3 - Applying solution patterns using specific engineering tools and mehods
C3.4 - Evaluating, comparatively and experimentally, the available alternative solutions for performance
optimization
C3.5 - Developing and implementing informatic solutions for concrete problems

C4. Improving performances of hardware, software and communication systems
C4.1 - Identifying and describing the defining performance elements of hardware, software and
communication systems
C4.2 - Explaining the interaction of the factors that determine the performances of hardware, software
and communication systems
C4.3 - Applying fundamental methods and principles for increasing performance of hardware, software
and communication systems
C4.4 - Choosing criteria and methods for performance evaluation of hardware, software and
communication systems
C4.5 - Developing performance based professional solutions for hardware, software and communication
systems

C
ro

s
s

c
o
m

p
e
te

n
c
e
s
 N/A

8.2. Applications (Seminars, Laboratory) Teaching methods Notes

1 Efficient implementation and comparison of sorting algorithms

Hands on work
on specific
algorithms;
weekly
assessment,
feedback, and
assistance

2 Efficient implementation and comparison of sorting algorithms (continued)
3 Efficient implementation and comparison of lists algorithms
4 Efficient implementation and comparison of lists algorithms (continued)
5 Efficient implementation and comparison of trees algorithms
6 Efficient implementation and comparison of trees algorithms (continued)
7 Implementation of augmented data structures
8 Implementation of augmented data structures (continued)

9 Efficient implementation of graphs algorithms
10 Efficient implementation of graphs algorithms (continued)

11 Efficient implementation of graphs algorithms (continued)

12 Efficient implementation of graphs algorithms (continued)

13 Approximation algorithms

14 Final Evaluation

Bibliography
1. T. Cormen, C. Rleiserson, R. Rivest, C. Stein, Introduction to Algorithms, Second or third Edition, The MIT
Press, 2001

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

The topic is fundamental in the field of Computer and Information Technology, its content is beyond dispute,
familiarizing students with the principles of algorithms design and analysis. The content is similar (including the
textbook) with all representative computer science departments in the world, is a core course in the ACM
curricula and was rated by the Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type 10.1 Assessment criteria 10.2 Assessment
methods

10.3 Weight in the final
grade

Course Theoretical analysis and
problem solving skills

 Written exam 70% (20% MT + 50%
FE)

Applications Hands on Problem solving skills Implementation/
hands on

 30% (Lab)

10.4 Minimum standard of performance

Nota ≥5

Course responsible Head of department
Prof.dr.eng. Rodica Potolea Prof.dr.eng. Rodica Potolea

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer Science/ Engineer

1.7 Form of education Full time

1.8 Subject code 26.

2. Data about the subject

2.1 Subject name Fundamental Programming Techniques

2.2 Subject area Computer Science and Information Technology

2.3 Course responsible/lecturer Prof. dr. eng. Ioan Salomie - Ioan.Salomie@cs.utcluj.ro

2.4 Teachers in charge of applications Sl. dr. eng. Tudor Cioară,, Sl. dr. eng. Cristina.Pop, As. Drd.
Marcel Antal, As.drd. Claudia Pop, As. Drd. Dorin Moldovan

2.5 Year of study

II 2.6 Semester

4 2.7 Assessment exam 2.8 Subject
category

DF/OB

3. Estimated total time

Sem
.

Subject name Lectur
e

Application
s

Lectur
e

Application
s

Individual
study TOTAL Credit

[hours / week.] [hours / semester]

 S L P S L P

4
Fundamental Programming

Techniques
2 - 2 - 28 - 28 - 74 130 5

3.1 Number of hours per week 4 3.2 of which, course 28 3.3 applications 28

3.4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications 28

Individual study Hours

Manual, lecture material and notes, bibliography 18

Supplementary study in the library, online and in the field 16

Preparation for seminars/laboratory works, homework, reports, portfolios, essays 24

Tutoring

Exams and tests 16

Other activities

3.7 Total hours of individual study 74

3.8 Total hours per semester 130

3.9 Number of credit points 5

4. Pre-requisites (where appropriate)

4.1 Curriculum Fundamentals of Object Oriented Programming

4.2 Competence Knowledge of Object Oriented Programming

5. Requirements (where appropriate)

5.1 For the course Blackboard, projector, computer, internet

5.2 For the applications Computers, specific software, internet

6. Specific competences

7. Discipline objectives (as results from the key competences gained)

7.1 General objective Knowledge and using of object-oriented programming techniques for the

development of professional software applications

7.2 Specific objectives -to use programming techniques for designing of classes and interfaces,

including contracts and invariants;

-to use programming techniques for code reuse by inheritance and

polymorphism

-to use generic programming techniques for collection processing

-to use programming techniques for reflection and event based

-to use programming techniques for concurrent and multi-threading

programming

-to use object-oriented and functional programming in an integrated

approach for the development of flexible and efficient programs

-to use design patterns and frameworks

-to use programming techniques for performance and software

maintenance

8. Contents

8.1. Lecture (syllabus) Teaching
methods

Notes

1 Programming techniques with classes and interfaces -Using modern
multimedia
teaching methods
and direct access
to internet;
-Challenging
questions during
lecturers
-Students are
invited to
collaborate in
research projects
-Personal
assistance hours
the semester and
before the exam

2 Programming techniques using inheritance and polymorphism

3 Programming techniques using contracts and invariants

4 Generic programming techniques

5 Reflection techniques

6 Event-driven techniques

7 Collection programming techniques

8 Concurrent and multithreading techniques

9 Flexibility and reuse through design patterns

10 Main design patterns of type creational, structural and behavioral

11 Flexibility and reuse through frameworks

12 Lambda Expressions and Stream processing

13 Multiparadigm (functional and OO) programming techniques

14 Programming techniques for efficiency and performance

Bibliography
1. Ioan Salomie - Tehnici Orientate Obiect, Editura Albastra, Microinformatica, 1995
2. Eric Gamma, Helm, Johnson, Vlissides - Design Patterns, Addison Wesley, 1995 (translated into Romanian

P
ro

fe
s
s
io

n
a

l

c
o
m

p
e
te

n
c
e
s

C4 - Improving the performances of the hardware, software and communication systems
C4.1 - Identifying and describing the defining elements of the performances of the
hardware, software and communication systems
C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software
and communication systems
C4.3 - Applying the fundamental methods and principles for increasing the performances of the
hardware, software and communication systems
C4.4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and
communication systems
C4.5 - Developing professional solutions for hardware, software and communication systems based on
performance optimization

C
ro

s
s

c
o
m

p
e
te

n
c
e
s
 N/A

by Teora Publ. as "Sabloane de Proiectare")
3. Joshua Bloch - Effective Java, 2/e Addison Wesley, 2008
4. Ioan Salomie, Note de Curs, http://www.coned.utcluj.ro/~salomie/TP

8.2. Applications (Seminars, Laboratory, Projects) Teaching methods Notes

1 Intro to lab resources and requirements -Lab sessions with
pre-defined
exercises and
assignments
-Using modern
multimedia
teaching methods
and direct access
to internet;
-Students are
invited to
collaborate in
research projects
-Personal
assistance hours
during the
semester and
before the exam

2-3 Assignment 1 - Programming with inheritance and polymorphism

4-5 Assignment 2 - Programming with contracts (pre and post conditions) and

invariants

6-7 Assignment 3 Programming with multiple threads

8-9 Assignment 4 – Programming with design patterns

10-
11

Assignment 5 – Programming with generics and Java Collection

Framework

12-
13

Assignment 6 – Multi-paradigm programming

14

Lab Evaluation

Bibliography
- Steve McConnell - Code Complete, 2/e, Microsoft Press, 2004

- http://docs.oracle.com/javase/tutorial/index.html

- http://stackoverflow.com/

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

Fundamental Programming Techniques is a subject of the domain "Computers and Information Technology".
It teaches students to apply object-oriented programming techniques in designing and implementing of
software applications. The content was developed based on the analysis of similar disciplines from other
universities as well as based on the requirements of the IT employees. The content was also evaluated by
Romanian governmental agencies CNEAA and ARACIS.

10. Evaluation

Activity type 10.1 Assessment criteria 10.2 Assessment
methods

10.
3

Weight in the final
grade

Course How the students are using
programming techniques for: (i)
designing of classes and
interfaces, including contracts
and invariants; (ii) promote code
reuse by inheritance and
polymorphism; (iii) using generic
programming techniques for
collection processing; (iv) using
programming techniques for
concurrent and multi-threading
programming; (v) using object-
oriented and functional
programming in an integrated
approach for the development of
flexible and efficient programs;
(vi) using design patterns and
frameworks

 written exam 50%

Applications -Abilities to effectively specify,

design, implement and test

quality and performance object

– oriented programs

 -Assessment of

programming

assignments

-Written exam

 50%

http://www.coned.utcluj.ro/~salomie/TP
http://docs.oracle.com/javase/tutorial/index.html
http://stackoverflow.com/

-Quality of assessment

deliverables

-Activity during lab sessions

-Presence to lab sessions

10.4 Minimum standard of performance

-To be able to use object-oriented programming techniques in designing and implementing software

applications

-At least mark 5 at the exam and lab evaluation

Course responsible Head of department
Prof.dr.eng. Ioan Salomie Prof.dr.eng. Rodica Potolea

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer Science/ Engineer

1.7 Form of education Full time

1.8 Subject code 27.

2. Data about the subject

2.1 Subject name Operating Systems

2.2 Subject area Computer Science and Information Technology

2.3 Course responsible/lecturer Conf dr. ing. Adrian Coleşa – adrian.colesa@cs.utcluj.ro

2.4 Teachers in charge of applications Conf. dr. ing. Adrian Coleşa – adrian.colesa@cs.utcluj.ro
Ing. Radu Ciocas – rciocas@bitdefender.com

Ing. Gergo Janos Szeles – jszeles@bitdefender.com

Ing. Razvan Teslaru – rteslaru@bitdefender.com

Ing. Alexandru Brîndușe – abrinduse@bitdefender.com

2.5 Year of
study

II 2.6 Semester

4 2.7 Assessment exam 2.8 Subject
category

DID/OB

3. Estimated total time

Sem
.

Subject name Lecture Applications

Lecture Applications

Individual
study

TOTAL Credit

[hours / week.] [hours / semester]

 S L P S L P

4 Operating Systems 2 - 2 - 28 - 28 - 74 130 5

3.1 Number of hours per week 4 3.2 of which, course 2 3.3 applications 2

3.4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications 28

Individual study Hours

Manual, lecture material and notes, bibliography 30

Supplementary study in the library, online and in the field 10

Preparation for seminars/laboratory works, homework, reports, portfolios, essays 28

Tutoring 2

Exams and tests 4

Other activities 0

3.7 Total hours of individual study 74

3.8 Total hours per semester 130

3.9 Number of credit points 5

4. Pre-requisites (where appropriate)

4.1 Curriculum Computer Programming, Data Structures and Algorithms

4.2 Competence C programming

5. Requirements (where appropriate)

5.1 For the course Blackboard / Whiteboard, Beamer

5.2 For the applications Computers, Linux, Windows, Blackboard / Whiteboard

6. Specific competences

mailto:adrian.colesa@cs.utcluj.ro
mailto:rciocas@bitdefender.com
mailto:jszeles@bitdefender.com
mailto:rteslaru@bitdefender.com
mailto:abrinduse@bitdefender.com

7. Discipline objectives (as results from the key competences gained)

7.1 General objective Provide the students a clear understanding of what an OS is, its role and general
functionality and the ability to use fundamental system calls of an OS.

7.2 Specific objectives Let the students:

1. Know and understand the OS specific terminology.

2. Understand the general structure and functionality of an OS.

3. Understand the specific functionality of the most important OS components, like

shell, process manager, file system, memory manager, security manager.

4. Understand the functionality of main synchronization mechanisms and be able

to use them to solve real synchronization problems.

5. Be able to write C programs to use an OS’s (Linux and Windows) system calls.

8. Contents

8.1. Lecture (syllabus) Teaching methods Notes

1 Introduction and basic concepts. OS’s definition, role, evolution,
components, main concepts (file, process, system calls). Basic hardware
aspects: CPU, user and kernel mode, memory layers, I/O devices. Basic
OS structure.

(1) use beamer
slides, combined
with blackboard
illustration;

(2) interactions
with students: ask
their opinion
relative to the
presented subject;

(3) give each class
a short evaluation
test; let students
discuss and argue

2 The Shell (Command Interpreter). Definition, role, functionality, simple
and complex commands. Standard input and output redirection.

3 File systems (1). User Perspective. File and directory concept from the
user point of view (definition, role, characteristics, operations).

4 File systems (2). Windows and Linux File Systems. Permission rights
and system calls.

5 File systems (3). Implementation aspects. Implementation strategies
overview, space management and related problems, hard and symbolic
links.

6 Process management. Process model: definition, role, characteristics.
Linux and Windows process management system calls.

P
ro

fe
s
s
io

n
a

l
c
o
m

p
e
te

n
c
e
s

C3: Problems solving using specific Computer Science and Computer Engineering tools (3 credits)

 C3.1: Identifying classes of problems and solving methods that are specific to computing
systems

 C3.2: Using interdisciplinary knowledge, solution patterns and tools, making experiments and
interpreting their results

 C3.3: Applying solution patterns using specific engineering tools and methods

 C3.4: Evaluating, comparatively and experimentally, the available alternative solutions for
performance optimization

 C3.5: Developing and implementing informatic solutions for concrete problems
C4: Improving the performances of the hardware, software and communication systems (2 credits)

 C4.1: Identifying and describing the defining elements of the performances of the hardware,
software and communication systems

 C4.2: Explaining the interaction of the factors that determine the performances of the hardware,
software and communication systems

 C4.3: Applying the fundamental methods and principles for increasing the performances of the hardware,

software and communication systems

 C4.4: Choosing the criteria and evaluation methods of the performances of the hardware,
software and communication systems

 C4.5: Developing professional solutions for hardware, software and communication systems
based on performance optimization

C
ro

s
s

c
o
m

p
e
te

n
c
e
s
 N/A

7 Thread management. Thread model: user vs. kernel threads,
implementation problems, usage, performance aspects. Basic scheduling
algorithms (FIFO, SJF, Priority-based). Linux and Windows process
thread system calls.

each other their
solution; give them
the good solution
and let them
evaluate their own
one;

(4) propose 2-3
interesting study
cases of OSes to
be prepared and
presented by
students;

(5) students are
invited to
collaborate in
research projects.

8 Process synchronization (1). Theoretical aspects. Context, definition,
synchronization mechanisms, techniques and problems (locks,
semaphores, monitors, mutual exclusion, starvation, deadlock).

9 Process synchronization (2). Classical synchronization patterns:
producer/consumer, readers/writers, rendez-vous, barrier, dining
philosopher, sleeping barber. Similarities between different
synchronization mechanisms.

10 Inter-process communication. Pipe files, shared memory, message
queues, signals.

11 Memory management (1). Context, definition, binding, basic techniques,
space management, addresses translation, swapping.

12 Memory management (2). Paging and segmentation.

13 I/O Devices Management. Principles, disks, clocks, character-oriented
terminals.

14 Security aspects. Security policies and mechanisms. Basic program's
vulnerabilities (buffer overflow).

Bibliography
1. Andrew Tanenbaum. Modern Operating System, 2nd Edition, Prentice-Hall, 2005, ISBN 0-13-092641-8.
2. A. Silberschatz, P. Galvin, G. Gagne, Operating Systems Concepts, 8th Edition, Wiley, 2010
3. Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, online

available at http://pages.cs.wisc.edu/~remzi/OSTEP/

8.2. Applications (Laboratory) Teaching methods Notes

1 Laboratory presentation: Purpose, contents, strategies, requirements.
Get familiar with Linux OS: main characteristics, basic commands,
access rights. (1) students are

presented a very

brief overview of

the most important

and difficult

aspects of the

working subject;

(2) students are

given at the

beginning of each

class a short

evaluation quiz;

(3) students are

given a hands-on

tutorial to practice

with working

subject's aspects

and to solve

problems

(4) students are
given challenging
problems for extra
credit;

2 Linux batch scripts: basic Linux commands, command line structure,
scripts, command line parameters, variables, control flow commands,
functions.

3 Linux system calls to access data in files: basic system calls to store
and retrieve data to and from regular user files: open, read, write, lseek,
close.

4 Linux system calls for file and directory manipulation: system calls to
rename or remove a file, link a file to more directories, get information
about a file or directory, change permission rights and listing a directory
contents.

5 Windows case: NTFS and FS system calls.

6 Linux system calls for process management: system calls for creating
a new process, terminating an existing process, waiting for a child
process to terminate, loading another executable into an existing process
etc.

7 Linux threads: Linux implementation of POSIX functions used to create
and manage threads: pthread_create, pthread_join, pthread_exit etc.

8 Synchronization mechanisms (1): Linux semaphores. Linux system
calls to create and use semaphores: semget, semctl, semop.

9 Synchronization mechanisms (2): POSIX locks and condition variables.
Linux functions used to create and use POSIX locks and condition
variables: pthread_mutex_lock, pthread_mutex_unlock,
pthread_cond_wait, pthread_cond_signal.

10 Windows Case: process and thread system calls, synchronization
mechanisms.

11 Inter-process Communication Mechanisms (IPC): Linux named (FIFO)
and nameless pipes. System calls for managing and using pipes: pipe
and mkfifo.

12 Memory management: ELF executable file format. Virtual vs. physical
address space. Dynamically allocated memory.

13 Memory management: memory-mapped files, shared memory.

14 Security aspects: buffer overflow detection and correction.

Bibliography
1. Lecture slides and laboratory text and support at http://moodle.cs.utcluj.ro/

2. M. Mitchell, J. Oldham, A. Samuel, Advanced Linux Programming, New Riders Publishing, 2001

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

OS knowledge is a fundamental requirement in the CS field. We follow the ACM curricula guide. We also
consult relevant IT companies about their practical expectations regarding OS knowledge and adapt
accordingly our course contents. In this sense, Linux and Windows are the most used OSes. Usually the
teachers in charge of lab classes are former graduate students of our CS program with consistent experience
in industry. They are permanently consulted regarding the OS course curriculum and its applicability in real
projects in industry.

10. Evaluation

Activity type 10.1 Assessment criteria 10.2 Assessment methods 10.3 Weight in
the final grade

Course Students must understand fundamental OS

concepts and be able to correctly define

them. They must also be able to apply their

knowledge to solve user-space problems

related to or dependent by an OS.

Small problem-like subjects

requiring students to apply the

theoretical learned OS related

aspects to give a solution to

proposed problem.

0.67

Applications Students must be able to develop C

programs that use different OS system

calls to solve practical, problems related to

or dependent by an OS.

Quiz tests. Programming

problems, whose solution has

to be implemented in C and

run on computers.

0.33

10.4 Minimum standard of performance.

Students must attend minimum 9 lecture classes to be allowed to take the exam in the regular exam session.

Students must attend minimum 7 lecture classes to be allowed to take the exam in any re-examination

sessions. Less than 7 attended lecture classes leads to the interdiction to take any course re-examination in

the university year the course is taught.

Students must attend minimum 12 lab classes to be allowed to take the exam in the regular exam session.

Students must attend minimum 10 lab classes to be allowed to take the exam in any re-examination sessions.

Less than 10 attended lab classes leads to the interdiction to take any lab re-examination in the university year

the course is taught.

Students are allowed to take the final course examination only after passing the lab examination.

Be able to define the fundamental OS principles and concepts, like process, thread, file, directory, lock,

semaphore, paging.

Be able to write C program to use fundamental system calls in Linux for working with files, processes, threads,
synchronization mechanisms and memory.

Course responsible Head of department
Conf.dr.ing. Adrian Colesa Prof.dr.eng. Rodica Potolea

http://moodle.cs.utcluj.ro/

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer Science/ Engineer

1.7 Form of education Full time

1.8 Subject code 28.

2. Data about the subject

2.1 Subject name Elements of Computer Assisted Graphics

2.2 Subject area Computer Science and Information Technology

2.3 Course responsible/lecturer Prof.dr.eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro

2.4 Teachers in charge of applications Lect.dr.eng. Bacu Victor, As.eng. Constantin Nandra,
{victor.bacu, constantin.nandra}@cs.utcluj.ro

2.5 Year of study

II 2.6 Semester

4 2.7 Assessment exam 2.8 Subject
category

DF/OB

3. Estimated total time

Sem
.

Subject name Lectur
e

Application
s

Lectur
e

Application
s

Individual
study TOTAL Credit

[hours / week.] [hours / semester]

 S L P S L P

4
Elements of Computer Assisted

Graphics
2 - 2 - 28 - 28 - 48 104 4

3.1 Number of hours per week 4 3.2 of which, course 2 3.3 applications 2

3.4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications 28

Individual study Hours

Manual, lecture material and notes, bibliography 20

Supplementary study in the library, online and in the field 6

Preparation for seminars/laboratory works, homework, reports, portfolios, essays 10

Tutoring 3

Exams and tests 9

Other activities 0

3.7 Total hours of individual study 48

3.8 Total hours per semester 104

3.9 Number of credit points 4

4. Pre-requisites (where appropriate)

4.1 Curriculum Computer programming (C language)

4.2 Competence Applications development in C programming language

5. Requirements (where appropriate)

5.1 For the course Projector, computer

5.2 For the applications Laboratory attendance is mandatory
Study of laboratory materials from the server

6. Specific competences

7. Discipline objectives (as results from the key competences gained)

7.1 General objective Learning about the architecture of a graphic system, the study of the graphic
pipeline, the study of 2D graphic algorithms

7.2 Specific objectives 1. Creation of the graphical model of a scene of objects
2. Implementation of the basic algorithms that form the core of a graphic

system
3. Development of graphic applications in a high-level programming language

(C, C++)
4. Implementation of the main phases of the graphic transformation pipeline

8. Contents

8.1. Lecture (syllabus) Teaching methods Notes

1 Introduction. History. Examples

New multimedia
teaching
approaches will be
used in classes.

The course is
interactive and
includes
demonstrations
that exemplify
graphical methods
and algorithms.

During the
semester
and before
each exam
there are a
few
preparation
hours
planned.

2 Graphics systems – architecture, standards

3 Graphics devices – logic and physics devices, input, output and
interactive devices

4 Graphics transformations pipeline – 2D and 3D transformations.
Matrix operators

5 Mathematics in computer graphics

6 Lines scan conversion algorithms

7 Circles scan conversion algorithms

8 Polygons scan conversion algorithms

9 Clipping algorithms – point, line, polygon and text

10 Projections and viewing transformations

11 Photorealistic presentation of 3D objects – concepts, algorithms,
examples

12 Color models – color perception, color space and standards, color in
software design

13 Graphics formats – vector and raster formats, data compression ,
Web technologies

14 Graphics pattern grammars

Bibliography
7. Foley J.D., van Dam, A., Feiner, S.K., Hughes, J.F., "Computer Graphics. Principles and Practice".

Addison-Wesley Publishing Comp., 1992.
8. Watt A., "3D Computer Graphics". Addison-Wesley, 1998.
In virtual library

1. Course resources, http://cgis.utcluj.ro/teaching/

8.2. Applications (Laboratory) Teaching methods Notes

1 Introduction to SDL Documentation
and examples will
be available to the
students, prior to
the laboratory

Each
student will
have to
develop a
specific

2 Mathematics in computer graphics: vectors

3 Mathematics in computer graphics: matrices

4 Graphics transformations

5 Graphics transformations in SDL

P
ro

fe
s
s
io

n
a

l

c
o
m

p
e
te

n
c
e
s

C3 – Problems solving using specific Computer Science and Computer Engineering tools (4 credits)
C3.1 – Identifying classes of problems and solving methods that are specific to computing systems
C3.2 – Using interdisciplinary knowledge, solution patterns and tools, making experiments and
interpreting their results
C3.3 – Applying solution patterns using specific engineering tools and mehods
C3.4 – Evaluating, comparatively and experimentally, the available alternative solutions for performance
optimization
C3.5 – Developing and implementing informatic solutions for concrete problems

C
ro

s
s

c
o
m

p
e
te

n
c
e
s
 N/A

6 Line rasterization using the Bresenham algorithm classes, on a
dedicated server.
The students will
work
independently but
will also be
assisted by the
teacher.

project
based on
the
knowledge
acquired at
the
laboratory
hours.

7 Clipping algorithms for graphical primitives

8 Viewing transformations

9 Triangle rasterization using barycentric coordinates

10 Intermediate assessment

11 Hidden surface removal using the z-buffer algorithm

12 Bezier curves

13 Color computation

14 Final assessment

Bibliography
In virtual library

1. Course and practical works, http://cgis.utcluj.ro/teaching/

9. Bridging course contents with the expectations of the representatives of the community,

professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic,
yet modern, and introduces to students the fundamentals of graphic systems and 2D algorithms. The content
of this discipline has been aligned with the information presented in similar disciplines from other major
universities and companies from Romania, Europe and USA and has been evaluated by the authorized
Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type 10.1 Assessment criteria 10.2 Assessment
methods

10.3 Weight in the final
grade

Course The written exam evaluates the
understanding of the information
presented in classes and the
ability to apply this knowledge.

 Evaluation is
performed through
written exam.

 60% (E)

Course
activity

 The activity in class evaluates
the active involvement of the
students in the teaching process
and their participation to the
discussions, debates and other
class activities during the entire
semester.

 Evaluation is
performed through
a very short tests.

 10% (AC)

Applications Laboratory assessment
evaluates the practical abilities
obtained by the students.
Through homework
assignments the students have
the opportunity to develop their
skill in applying the notions,
concepts and methods
presented in class.

 Evaluation is
performed through
written and
practical exam.

 40% (L)

10.4 Minimum standard of performance

Graduation requirement: M≥5; final mark M=0.5*E+0.4*L+0.1*AC

Course responsible Head of department
Prof.dr.ing. Dorian Gorgan Prof.dr.eng. Rodica Potolea

SYLLABUS

1. Data about the program of study

1.1 Institution The Technical University of Cluj-Napoca

1.2 Faculty Automation and Computer Science

1.3 Department Computer Science

1.4 Field of study Computer Science and Information Technology

1.5 Cycle of study Bachelor of Science

1.6 Program of study/Qualification Computer Science/ Engineer

1.7 Form of education Full time

1.8 Subject code 29.

2. Data about the subject

2.1 Subject name Foreign Language II (English, French, German - Technical
documents elaboration)

2.2 Subject area Computer Science and Information Technology

2.3 Course responsible/lecturer Lector dr. Sanda Paduretu

2.4 Teachers in charge of applications -

2.5 Year of study

II 2.6 Semester

4 2.7 Assessment Colloquium 2.8 Subject
category

DC/OB

3. Estimated total time

Sem
.

Subject name Lectur
e

Application
s

Lectur
e

Application
s

Individual
study TOTAL Credit

[hours / week.] [hours / semester]

 S L P S L P

4
Foreign Language II (English,
French, German - Technical

documents elaboration)
2 - - - 28 - - - 24 52 2

3.1 Number of hours per week 2 3.2 of which, course 2 3.3 applications -

3.4 Total hours in the teaching plan 28 3.5 of which, course 28 3.6 applications -

Individual study Hours

Manual, lecture material and notes, bibliography

Supplementary study in the library, online and in the field

Preparation for seminars/laboratory works, homework, reports, portfolios, essays 24

Tutoring

Exams and tests

Other activities

3.7 Total hours of individual study 24

3.8 Total hours per semester 52

3.9 Number of credit points 2

4. Pre-requisites (where appropriate)

4.1 Curriculum None

4.2 Competence Minimum B2 level (CEFR)

5. Requirements (where appropriate)

5.1 For the course N/A

5.2 For the applications Class attendance, individual study

6. Specific competences

7. Discipline objectives (as results from the key competences gained)

7.1 General objective Students should acquire knowledge and integrated skills to
communicate in a foreign language in professional (technical and
engineering) contexts and on job related topics.

7.2 Specific objectives At the end of this course, the students will be able to:
- identify and apply the main principles of effective communication in
English
- read and write using effective academic and technical writing
techniques;
-participate and express their opinion, evaluation and
recommendation in technical exchange of information;
-take notes on specialized topics within their field of specialization;
-have the necessary skills read and write scientific articles
-read and extract specific and general information from a variety of
technical texts;

8. Contents

8.1. Lecture (syllabus) Teaching
methods

Notes

1 Introduction to communication. Communication in an academic setting.
Communication at work.

Lecture by
teacher, drill and
practice, class
discussion ,
questions and
answers,
textbook /
reading
assignments,
formative
assessment

2 The writing process. Features and stages of the writing process.

3 Readability. Characteristics and formulae for readability.

4 Improving readability. Web-page / computer programming readability.

5 Fundamentals of effective technical writing.

6 Overview of technical and scientific language used in written
communication. Best words and phrases. Reading grammar. Formal and
informal language.

7 Paragraphs. What is a paragraph? Elements of a paragraph.
Development of a paragraph.

8 Basic types of documents. User manuals, technical reports.

9 Citation: plagiarism, paraphrasing, summary, academic conventions

10 Plagiarism I: Complexities of definition. Plagiarism in Academic contexts.
The Academy’s response to plagiarism

11 Plagiarism II: Learning to write from sources. The “shock” of referencing.
Avoiding plagiarism.

12 Plagiarism III: The art of finding plagiarism. Types of academic
misconduct (ghost-writing, contract cheating, falsifying data).

13 Plagiarism IV: Student’s research on typologies of plagiarism. Assignment
discussion. Identifying main types (copy-paste, verbatim, translations,
disguised, shake and paste, clause quilts, structural, cut and slide, self-
plagiarism).

14 Style. Final conclusion.

Bibliography

P
ro

fe
s
s
io

n
a

l

c
o
m

p
e
te

n
c
e
s

N/A

C
ro

s
s

c
o
m

p
e
te

n
c
e
s
 CT3 – Demonstrating the spirit of initiative and action for updating professional, economical and

organizational culture knowledge (2 credits)

1.Marinela Granescu, Ema Adam, Effective academic and technical writing, UTPress, Cluj-Napoca, 2010
2. Justine Jobel, Writing for Computer Science: the art of effective communication, Springer Verlag,
Melbourne, 2000
3. Simon Haines, Real writing with answers, Cambridge University Press, 2008
4. R.R. Jordan, Academic writing course, Nelson, 1992
8.2. Applications (Seminars, Laboratory, Projects) Teaching methods Notes

1 -

Bibliography
-

9. Bridging course contents with the expectations of the representatives of the community, professional
associations and employers in the field

Mastering the elements of effective academic and technical writing will help the students in the field of
computer science to integrate better in the labour market and improve personal development. The introduction
in the language for specific purposes and academic discourse will facilitate reading and writing more
documents in the field of study, making informed decisions on various types of information, and keeping up-to-
date with state of the art knowledge in students’ professional field. Most engineers or scientists work in
organizational settings where team work is essential and good team work is impossible without good
communication.

10. Evaluation

Activity type 10.1 Assessment criteria 10.2 Assessment
methods

10.
3

Weight in the final
grade

Course Completion of end-term
evaluation, individual study,
attendance to course

 On-going class-
work evaluation,
and one end-term
test (integrated
skills)

 Class-work evaluation
- 20%
End-term test – 80%

Applications

10.4 Minimum standard of performance

at least 50% of all components of tasks solved correctly

Course responsible
Lect.dr. Sanda Paduretu

Head of department
Conf.univ.dr. Ruxanda Literat

