	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	16.

2. Data about the subject

2.1	Subject name			Elec	Electronic Measurements and Sensors						
2.2	Subject area			Com	Computer Science and Information Technology						
2.3	2.3 Course responsible/lecturer Assoc. Professor Rodica Holonec, Phd eng				nd eng						
2.4	2.4 Teachers in charge of applications			Lect	Lecturer Septimiu Crisan, Phd eng						
2.5	Year of study		2.6	Semester	3	2.7	Assessment	exam	2.8	Subject category	DID/OB

3. Estimated total time

Sem	Subject name	Lectur e	Арр	olica s	tion	Lectur e	Арр	olicat s	tion	Individual study	TOTAL	Credit
		[hours / week.]		[hours / seme:			ster]					
			S	L	Ρ		S	L	Ρ			
3	Electronic Measurements and Sensors	2	-	2	-	28	-	28	-	48	104	4

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibl	ography						20
Supplementary study in the library, online and in the field							3
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							20
Tutoring							2
Exams and tests						3	
Other activities							-
3.7 Total hours of individual study		48					

5.7		ΨU
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Basic Electrical circuit theory, Basic Electronics, Analysis methods for
		electronic circuits; General Physics

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre equipped with blackboard, computer, projector and sound
		system
5.2	For the applications	Laboratory room equipped with specific measuring devices and sensors

6. Specific competences

Professional competences	 C1 - Operating with basic Mathematical, Engineering and Computer Science concepts (2 credits) C1.1 - Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing a theoretical background for the characteristics of the designed systems C2 - Designing hardware, software and communication components (2 credits) C2.1 - Describing the structure and functioning of computational, communication and software components and systems C2.2 - Explaining the role, interaction and operation of hardware, software and communication components C2.3 - Construction of hardware and software components of computing systems using design methods, languages, algorithms, data structures, protocols and technologies C2.4 - Evaluating the functional and non-functional characteristics of the computing systems using design methods, languages, algorithms, data structures, protocols and technologies C2.4 - Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 - Implementation of hardware, software and communication components
Cross competences	N/A

7.1	General objective	To provide a foundation in important topics of engineering system instrumentation such as: metrology, measurement techniques, electronic measurement devices, sensors principles and applications , virtual instrumentation
7.2	Specific objectives	To provide principle knowledge, practical training and measurement best practice regarding the instrumentation systems To provide knowledge about sensors in order to perform the documentation, implementation, and development of complex equipment and measurement devices.

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Measurement fundamentals. Terms and definitions. The structure of a complex instrumentation system. Sensors	Presentation, heuristic	Projector, blackboard
2	Fundamentals of Metrology. Measurement Units. Measurements Standards. Traceability. Measurement terminology. Errors and Uncertainties. The Measuring Instrument Specifications.	conversation, exemplification , problem	
3	Random Errors Analysis. Basic Concepts in Probability. Normal Distribution. Central Limit Theorem. The Evaluation of Uncertainties in Measurements	presentation, teaching exercise, case	
4	Meters. Analog Meters-Classifications and Symbols. Types of Analog Instruments. Voltmeters. Ammeters. Wattmeters, Ohmmeters	study, formative	
5	Measurements with Bridges and Potentiometers. Wheatstone Bridge. Principle. Strain gauge measurement bridges. Types of AC bridges. Potentiometers.	evaluation	
6	Amplification in Instrumentation. Operational Amplifiers. Basic circuits. Instrumentation Amplifiers. Current to Voltage, Resistance to Voltage Converters. Bridge Amplifiers.		
7	Electronic Voltmeters. DC Electronic Voltmeters. Types of AC Electronic Voltmeters. Lock-in Amplifiers. Principles and Applications		

8	Electronic Counters. Digital measurement of frequency and time								
9	Digital Multi-meters (DMM). Computing Measuring Systems. Data								
	Acquisition Boards. Sample and Hold Circuits. Nyquist theorem.								
10	Data Acquisition Boards Components. Digital to Analog Converters.								
	Analog to Digital Converters. Virtual Instruments								
11	The Analog and Digital Oscilloscopes								
12	Transducers, Sensors and Actuators. Terminology. Principles and								
	Classifications. Analog and Digital Sensors.								
13	Analog Sensors. Potentiometers. Variable-Inductance and Capacitance								
	Sensors. Temperature sensors.								
14	Digital sensors. Encoders. Optical Sensors: Fiber-Optic Sensors, Light sensors								
Biblic	paraphy								
1.	Rodica Holonec. Electrical Measurements and Instrumentation. Editura Medi	amira. Clui-Napod	a. 2003.						
	259 p. ISBN 973-9357-42-3	····, ···, ···, ···							
2.	Todoran, Gh.,Copandean,R; Masurari Electrice si Electronice.Editura Mediai	nira; Cluj Napoca.	2003.						
	282p. ISBN 973-9357-61-X.								
3.	Dragomir, N.D., TÂRNOVAN, I.G., Crişan, T.E. – Electrical Measurement of	Non Electric Quan	tities. Vol. I.						
	Editura MEDIAMIRA, Cluj-Napoca, România, 2002. ISBN 973-9358-75-6.								
4.	TÂRNOVAN, I. G. – Metrologie electrică și instrumentație. Editura MEDIAMI	RA, Cluj-Napoca,	România,						
	2003. ISBN 973-9357-39-3.								
5.	Munteanu,R., TÂRNOVAN,I.G., Dragomir,N.D., Popovici,O. – Electrotehnică	și convertoare en	ergetice.						
	Editura MEDIAMIRA, Cluj-Napoca, România, 1997.		-						
6.	http://users.utcluj.ro/~tarnovan/Electronic%20Measurements%20and%20Se	<u>nsors.htm</u>							
8.2.	Applications (Seminars, Laboratory, Projects)	Teaching	Notes						
		methods							
1	Analog and Digital Measurement Devices								
2	Domain Extension of Analog Measurement Instruments								
3	Single-phased A.C. Circuits Measurements								
4	The Wheatstone Bridge								
5	The Oscilloscope. Basics and Measuring Principles		Experime						
6	Virtual Instrumentation: LabView - Basic Operations		ntal						
7	Virtual Instrumentation applications		circuits						
8	Data Acquisition Systems: Single Sample Acquisition Mode	Exposuro	Computer						
9	Data Acquisition Systems. Signal Processing Applications								
10	Temperature Measurement	applications	Labview						
11	Level and Flow Measurement		software,						
12	Displacement Measurement		NI						
13	Angular Speed Measurement	Angular Speed Measurement hardware							
13 14	Angular Speed Measurement Final Assessment of Laboratory Reports	-	hardware						
13 14 Bibli	Angular Speed Measurement Final Assessment of Laboratory Reports ography	-	hardware						

Manual Editura U.T. PRESS, Cluj-Napoca 2010, ISBN.978-973-662-600

2. Munteanu,R., Dragomir,N.D., TÂRNOVAN,I.G., Holonec,Rodica, Bortoş,P. – Tehnici de măsurare. Îndrumător de laborator. Atelierul de multiplicare al U.T.C.-N., 1995.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired skills will be required of employees who work in designing or testing of sensors and instrumentation systems.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3	Weight in the
				final grade
Course	Final exam (E)-Theoretical	Written examination		80%
	questions and exercises (3 hours)			

Applications	Practical circuit (P)	Checking of functionality	10%					
	Homework (HW)	Verification of results	10%					
10.4 Minimun	10.4 Minimum standard of performance							
G=(E+P+HW)/100; Condition to take the credits: G≥5;								

Course responsible Assoc.Prof. Rodica Holonec, PhD eng Head of department Prof. Rodica Potolea, PhD eng

	1. Data about the program of stu	ay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Mathematics
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	17.

1. Data about the program of study

2. Data about the subject

2.1	2.1 Subject name					Num	Numerical Calculus					
2.2	Subject area					Corr	Computer Science and Information Technology					
2.3	Course respon	nsible	e/lec	turer		Prof	. dr. Dumitru N	/lircea Ivan –	mirce	a.ivan@math.ute	<u>cluj.ro</u>	
2.4	Teachers in cl	harge	e of a	applications		Prof	Prof. dr. Daniela Rosca – daniela.rosca@math.utcluj.ro					
	S.I. Mircia Gurzau – mircia@gurzau@math.utcluj.ro											
2.5	Year of study	=	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject	DID/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur A e		Application s		Lectur Application I e s		Individual study	TOTAL	Credit		
		[hours / week.]		[hours / semester]			ster]					
			S	L	Ρ		S	L	Ρ			
3	Numerical Calculus	2	-	2	-	28	-	28	-	72	128	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliog	jraphy						30
Supp	plementary study in the library, online	and in	the fiel	d				9
Prep	aration for seminars/laboratory works	, home	work, r	eports, portfolios, es	ssays			30
Tuto	ring							0
Exams and tests							3	
Other activities						0		
3.7	Total hours of individual study		72					
3.8	Total hours per semester		128					

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Differential and Integral Calculus
4.2	Competence	Competences in elementary Differential and Integral Calculus:
		derivatives, integrals, series.

5

5. Requirements (where appropriate)

5.1	For the course	Videoprojector
5.2	For the applications	Videoprojector

6. Specific competences

3.9 Number of credit points

Professional competences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts (5 credits) C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication systems C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems
Cross competences	N/A

7.1	General objective	A presentation of the concepts, notions, methods and fundamental
		techniques used in differential calculus.
7.2	Specific objectives	Use of the differential calculus in order to solve problems in
		engineering.

8.1. L	ecture (syllabus)	Teaching	Notes
1	Elements of Error Theory. Floating Point Arithmetic. Absolute and Relative Errors	Explanation	2 hr
2-3	Numerical Methods in Linear Algebra. Special Types of Matrices. Norms of Vectors and Matrices. Eigenvalues and Eigenvectors. Error Estimation. Matrix Equations. Pivoting Elimination. Improved Solutions of Matrix Equations. Partitioning Methods for Matrix Inversion. LU Factorization. Doolittle's Factorization. Choleski's Factorization Method. Iterative Techniques for Solving Linear Systems. Jacobi Iterative Method. Gauss-Seidel Iterative Method. Relaxation Methods. Characteristic Polynomial: Leverrier Method. Characteristic Polynomial: Fadeev-Frame Method.	Demonstration Collaboration Interactive activities	4 hr
4-5	Solutions of Nonlinear Equations. Method of Successive Approximation. The Bisection Method. The Newton-Raphson Method. The Secant Method. False Position Method. The Chebyshev Method. Numerical Solutions of Nonlinear Systems of Equations. Newton's Method for Systems of Nonlinear Equations. Steepest Descent Method.		4 hr
6-8	Elements of Interpolation Theory. Lagrange Interpolation. Divided Difference. Mean Value Properties in Lagrange Interpolation. Approximation by Interpolation. Hermite Interpolating Polynomial. Finite Differences. Interpolation of Multivariable Functions. Scattered Data Interpolation. Shepard's Method. Splines. B-splines.		6 hr
9- 10	Elements of Numerical Integration. Richardson's Extrapolation. Numerical Quadrature. Error Bounds in the Quadrature Methods. Trapezoidal Rule. Richardson's Deferred Approach to the Limit. Romberg Integration. Newton-Cotes Formulas. Simpson's Rule. Gaussian Quadrature.		4 hr
11- 12	Elements of Approximation Theory. Discrete Least Squares Approximation. Orthogonal Polynomials and Least Squares Approximation. Rational Function Approximation. Padé Approximation. Trigonometric Polynomial Approximation. Fast Fourier Transform. Bernstein Polynomial. Bézier Curves. <i>METAFONT</i> .		4 hr
13- 14	Integration of Ordinary/Partial Differential Equations. The Euler Method. The Taylor Series Method. The Runge-Kutta Method. The Runge-Kutta Method for Systems of Equations. Integration of Partial Differential Equations. Parabolic Partial-Differential Equations.		4 hr

	Hyperbolic Partial Differential Equations. Elliptic Partial Differential							
	Equations.							
Biblio	graphy		I					
1	. Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002. ISI	BN 973-9358-88-8.						
2	. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. N 2003. ISBN 973-9357-41-5.	/lediamira, Cluj-Nap	oca,					
3	. Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode nume electrică. Editura Universității din Oradea,	erice cu aplicații în i	ngineria					
4	 Mircea Ivan and Kálmán Pusztai. Mathematics by Computer. Comprex Pu Napoca, 1992. 	Iblishing House, Clu	ıj-					
8.2. <i>F</i>	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes					
1	The applications follow the topics of the courses.	Explanation						
		Demonstration	ł					
	Collaboration Interactive activities							
Biblic	graphy:							
1	1. Mircea Ivan and Kálmán Pusztai. Numerical Methods with Mathematica. Mediamira, Cluj-Napoca,							

2003. ISBN 973-9357-41-5.
 Ioan-Adrian Viorel, Dumitru Mircea Ivan, and Loránd Szabó. Metode numerice cu aplicaţii în ingineria electrică. Editura Universităţii din Oradea,

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the final		
				methods		grade		
Course		Abilities of understanding and		Written		30%		
		using creatively the concepts		examination				
		and proofs						
Applications		Abilities of solving problems and		Written		70%		
		applying algorithms		examination				
10.4 Minimum standard of performance								
Ability to present coherently a theoretical subject and to solve problems with practical content								

Ability to present coherently a theoretical subject and to solve problems with practical content.

Course responsible Prof.dr. Dumitru Mircea Ivan

	1. Data about the program of stu	ay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	18.

1. Data about the program of study

2. Data about the subject

2.1	Subject name				Anal	Analog and digital circuits					
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3 Course responsible/lecturer			Prof.	Prof. dr. eng. Dădârlat Vasile Teodor –							
					Vasi	Vasile.Dadarlat@cs.utcluj.ro					
2.4	2.4 Teachers in charge of applications				Conf	Conf. dr. eng. Peculea Adrian – <u>Adrian.Peculea@cs.utcluj.ro</u>					
SI. dr. eng. lar					r. eng. lancu l	Bogdan – <mark>Bog</mark>	dan.l	ancu@cs.utcluj.	<u>ro</u>		
2.5	Year of study	П	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion	Lectur	Арр	licat	tion	Individual		
-		e s		е	S		study	TOTAL	Credit			
		[hours / week.]			[hours / semester]							
			S	L	Ρ		S	L	Ρ			
3	Analog and digital circuits	2	-	2	-	28	-	28	-	74	130	5

3.1	3.1 Number of hours per week 4 3.2 of which, course 2 3.3 application						applications	2
3.4	.4 Total hours in the teaching plan 56 3.5 of which, course 28 3.6 applications							28
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliog	Iraphy						40
Supp	plementary study in the library, online	and in th	e fielc	1				10
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	ssays			24
Tuto	ring							
Exar	ns and tests							
Other activities								
3.7	3.7 Total hours of individual study 74							
3.8 Total hours per semester 130								

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Basic knowledge in Physics, Electronics, Mathematics

5

5. Requirements (where appropriate)

5.1	For the course	Multimedia means
5.2	For the applications	Classroom, PC with internet access

6. Specific competences

Number of credit points

3.9

Professional competences	 C2: Designing hardware, software and communication components C2.1: Describing the structure and functioning of computational, communication and software components and systems C2.2: Explaining the role, interaction and functioning of hardware, software and communication components C2.3: Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4: Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5: Implementing hardware, software and communication systems
Cross competences	N/A

7.1	General objective	Teamwork, understanding of basic digital electronics principles
7.2	Specific objectives	Each student able to understand the functionality for the main circuits from a motherboard

8.1. L	ecture (syllabus)	Teaching	Notes			
		methods				
1	Introduction. Electrical signals, passive devices, linear circuits behavior at	Oral				
	elementary signals application.	Presentations				
2	Semiconductor devices (I). Semiconductor, Schottky, Zener and light	using multimedia				
	emitting diode.	means				
3	Semiconductor devices (II). Bipolar and field effect transistor.	Q & A				
4	Operational amplifiers. Characteristics, circuits with operational amplifiers	Interactive				
	with negative feedback.	teaching				
5	DC power supplies. Rectifiers, filters. Parametric, feedback and integrated					
	voltage regulators. Oscillators. Positive feedback, oscillator circuits.					
6	Integrated logic circuit parameters. Static transfer characteristics, noise					
	margins, fan-in and fan-out, propagation time, power dissipation.					
7	Integrated logic circuit families (I). TTL integrated logic circuits.					
8	Integrated logic circuit families (II). NMOS, CMOS and HCT integrated					
	logic circuits.					
9	Bus building with logic circuits. Open collector and three state integrated					
	logic circuits, connecting circuits to buses, transfer between registers and					
	three state logic.					
10	Positive feedback circuits (I). Schmitt trigger and flip-flop circuits.					
11	Positive feedback circuits (II). Monostable and astable circuits.					
12	Semiconductor memories. Volatile and non-volatile semiconductor					
	memories.					
13	Converters. Sampling, signal quantization, analog to digital and digital to					
	analog converters.					
14	Microcontrollers. Architecture, memory addressing, interrupt and timer					
	system, serial communication.					
Biblio	graphy					
1. Va	asile Teodor Dadarlat, Adrian Peculea, "Circuite analogice si numerice", E	Ed. U.T.PRES, Cluj	-Napoca,			
2006, ISBN (10) 973-662-243-6 ISBN (13) 978-973-662-243-4.						
8.2. /	Applications (Laboratory)	Teaching methods	Notes			
1	Electrical signals and liner circuits.	Practical				
2	Semiconductor, Schottky, Zener and light emitting diode.	exercises				
3	Bipolar and field effect transistor.	Brief				
4	Circuits with passive and semiconductor devices.	presentation of				

5	Circuits with operational amplifiers with negative feedback.	possible			
6	Rectifiers, filters and regulators.	solutions			
7	Oscillator circuits.	Self testing			
8	Bipolar integrated logic circuits. programmes				
9	MOS integrated logic circuits.				
10	Open collector integrated logic circuits.				
11	Three state integrated logic circuits.				
12	Schmitt trigger circuits.				
13	Multivibrator circuits.				
14	Laboratory test				
Biblic	Bibliography				
1	1. Slides for Analog an digital circuits courses + sets of problems and applications for individual study at				

 Slides for Analog an digital circuits courses + sets of problems and applications for individua <u>ftp://ftp.utcluj.ro/pub/users/dadarlat/circ_analognumeric-calc</u>

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course content is kept state of the art by using latest technologies and devices available on the market

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Interactivity and initial preparation, intermediary and final written examinations		Written exam (2,5 h).		70%
Applications		Quality of practical work, participation		Continuous assessment, final written colloquium		30%
10.4 Minimum standard of performance						
Grades > 5 for both theoretical and practical assessments						

Course responsible Prof. dr. eng. Vasile Dădârlat

	1. Data about the program of stu	ay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	19.

1. Data about the program of study

2. Data about the subject

2.1	Subject name (Obje	Object Oriented Programming						
2.2	Subject area				Com	Computer Science and Information Technology						
2.3	3 Course responsible/lecturer				S.I. c	S.I. dr. eng. Marius Joldoş – Marius.Joldos@cs.utcluj.ro						
2.4	Teachers in charge of applications				Eng.	Eng. Giuroiu Titus-Nicolae, MS - titus.giuroiu@gmail.com						
						Eng. Bondor Alexandru Viorel –						
						alexandru.viorel.bondor@gmail.com						
2.5	Year of study	Ш	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject	DID/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur e	Ар	plicat s	tion	Lectur e	Арр	olicat s	ion	Individual study	TOTAL	Credit
		[hours / week.]			[hours / semester]			ster]				
			S	L	Ρ		S	L	Ρ			
3	Object Oriented Programming	2	-	2	-	28	-	28	-	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study								Hours
Manual, lecture material and notes, bibliography							27	
Supplementary study in the library, online and in the field							5	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10	
Tutoring							7	
Exams and tests							5	
Other activities							0	
3.7 Total hours of individual study 74								

0.7	Total floars of individual study	1 -
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer Programming course
4.2	Competence	Use of a procedural programming language such as C

5. Requirements (where appropriate)

		 -			
5.1	For the course				
5.2	For the applications				

6. Specific competences

Professional competences	 C2 – Designing hardware, software and communication components (5 credits) C2.1 – Describing the structure and functioning of computational, communication and software components and systems C2.2 – Explaining the role, interaction and functioning of hardware, software and communication components C2.3 – Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 - Metric based evaluation of functional and non-functional characteristics of computing systems C2.5 - Implementation of hardware, software and communication components
Cross competences	N/A

7.1	General objective	To learn a rigorous treatment of object-oriented concepts using Java as an example language
7.2	Specific objectives	 to prepare object-oriented design for small/medium scale problems to demonstrate the differences between traditional imperative design and object-oriented design to explain class structures as fundamental, modular building blocks to understand the role of inheritance, polymorphism, dynamic binding and generic structures in building reusable code to write small/medium scale Java programs with simple graphical user interface to use classes written by other programmers when constructing their systems to be able to design and build simple Graphical User Interfaces (GUI)s.

met	hods					
		+				
1 Concepts and paradigms in OOP. On to Java						
2 Control structures in Java.						
3 Classes and Objects. Arrays						
4 Packages. Inheritance and polymorphism.						
5 Java Interfaces. OO Application Development						
6 UML Object and Class Diagrams. Assertions.						
7 Testing. Debugging. Java Errors and Exceptions	turaa damaa					
8 Java Collections. Generic Programming.	tures, demos	Uses a				
9 Introduction to Java I/O	uiscussions	video-				
10 Event handling in Java. Introduction to Java Graphics		projecioi				
11 Graphical User Interfaces (I)						
12 Introduction to Threads						
13 Graphical User Interfaces (II)						
14 Review						
Bibliography						
1. Bruce Eckel, Thinking in Java, Third Edition, Prentice Hall PTR, 2002 (downloadable	e for free from t	he Web).				
2. Paul & Harvey Deitel, Java. How to Program (Early Objects), Tenth Edition, Prentice	e Hall, 2015					
3. David J. Barnes & Michael Kölling, Objects First with Java. A Practical Introduction u	using BlueJ, Fif	th				
Edition, Prentice Hall / Pearson Education, 2012						
4. Oracle Java Tutorials (freely downloadable from the Web)						
5. Schmuller Joseph, SAMS teach yourself UML in 24 hours, 2004						
8.2. Applications (Seminars, Laboratory, Projects)	ching methods	Notes				
1 Using BlueJ IDE Tut	toring	PCs				
2 Primitive Types and Simple IO in Java disc	cussions and	equippe				
Variables and Expressions in Java discussions, and dwi						
Flow Control and Simple Classes in Java						
5 Classes, Objects and Arrays dev	velopment	SDK				
6 Java Inheritance	F	and				

7	Java Interfaces		IDEs (BlueJ,		
8	Laboratory test 1				
9	Java Exception Handling.				
10	Collections				
11	Testing OOP programs ns)				
12	GUIs. Event Handling				
13	GUIs. Keyboard and Mouse Handling				
14	Laboratory test 2				
Bibliography					
1. Course Moodle site available at: https://labacal.utcluj.ro					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The contents of the course is in accordance with the ACM Computer Science Curricula recommendations Java programming language is the most widely used language.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final grade
				methods	3	
Course		Ability to solve problems using		Written exams:		
		the object orientated paradigm		In-class tests		10%
				Final		50%
Applications		Quality of laboratory		Specifications and		40%
		applications and evaluation of		code analysis and		
		the laboratory tests		evaluation		
10.4. Minimum standard of performance						
Correct solutions for min. 60% of the exam topics and applications						

Course responsible S.I. dr. eng. Marius Joldoş

	1. Data about the program of stu	ay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	20.

1. Data about the program of study

2. Data about the subject

2.1	Subject name				Data	DataBase					
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	3 Course responsible/lecturer				S.I. c	S.I. dr. eng. Călin Cenan – <u>Calin.Cenan@cs.utcluj.ro</u>					
2.4 Teachers in charge of applications				Conf	Conf. dr. eng. Delia Mitrea – <u>Delia.Mitrea@cs.utcluj.ro</u>						
2.5	Year of study	=	2.6	Semester	3	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	plica s	tion	Lectur e	Арр	olicat s	tion	Individual study	TOTAL	Credit
		[hour	s / v	veek	.]	[h	ours	s / se	me	ster]		
			S	L	Ρ		S	L	Ρ			
3	DataBase	2	-	2	-	28	-	28	-	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliog	Iraphy						21
Supp	elementary study in the library, online	and in th	e fielc	ł				28
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, e	essays	;		21
Tuto	ring							1
Exams and tests							3	
Other activities								
3.7	Total hours of individual study		74					
3.8 Total hours per semester 130								

4 Pre-requisites (where appropriate)

-	4. Pre-requisites (where appropriate)						
4.1	Curriculum	Mathematics					
4.2	Competence	Set theory					

5

5. Requirements (where appropriate)

5.1	For the course	Board, video projector, computer; student present in mandatory 50% of
		days for admission to the final exam
5.2	For the applications	Computers, specific software; student present in mandatory 100% of
		days for admission to the final exam

6. Specific competences

3.9 Number of credit points

Professional competences	 C4 - Improving the performances of the hardware, software and communication systems C4.1 - Identifying and describing the defining elements of the performances of the hardware, software and communication systems C4.2 - Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems C4.3 - Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems C4.4 - Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems C4.5 - Developing professional solutions for hardware, software and communication systems based on performance optimization
Cross competences	N/A

7.1	General objective	Developing general skills in databases and database applications
7.2	Specific objectives	Assimilate theoretical knowledge on relational databases, Structured Query Language SQL language Presentation of Database Management Systems DBMS Getting practical skills for designing and implementing database and development of database application

8. Contents

8.1. L	ecture (syllabus)	Teaching	Notes		
		methods			
1	Introduction. Database, Database Management Systems	PDF & PPT			
2	Database Management Systems Architecture	Presentations;			
3	Entity – Relation Model	Demonstrations			
4	Relational Model	and model			
5	Database Design; Optimization, Normal forms	presentations on			
6	Entities; Relations; Constraints; Views (II)	board; small exercises to increase			
7	Physical database design				
8	Indexes				
9	Relational Algebra	Interaction			
10	Relational Calculus				
11	Query by example				
12	Structured Query Language – SQL				
13	Database administration; Security	7			
14	Database Applications				
<u> </u>			•		

Bibliography

- 1. Alexandru Leluțiu Perenitatea Concepteleor Promovate de BAZELE de DATE, Ed. Albastra, 2003
- 2. Raghu Ramakrishnan and Johannes Gehrke Database Management Systems, McGraw-Hill Science, 2002
- 3. Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom *First Course in Database Systems*, Prentice Hall, 2001
- 4. P. O'Neil, E. O'Neil DATABSE Principles, Programming and Performance, Academic Press Morgan Kaufmann, 1994
- 5. Philip Greenspun SQL for Web Nerds, http://philip.greenspun.com/sql/
- 6. Ryan K. Stephens, Ronald R. Plew, Teach Yourself SQL in 21 Days, Prentice Hall, 1999

8.2. /	Applications (Laboratory)	Teaching methods	Notes
1	Microsoft SQL Server presentation		Comput
2	MS SQL Server administration	Exposure and	ers,
3	MS SQL Server databases: Tables; Relationships; Database diagrams	applications	MS
4	MS SQL Server databases: Indexes; Constraints; Views		SQL

Б	MS SOL Server databases: INSERT LIDDATE DELETE		Sorvor			
5	NO SQL Server databases. INSERT, OFDATE, DELETE		Server,			
6	Structured Query Language – SQL – Simple SELECT		MySQL,			
7	Structured Query Language – SQL – Advanced SELECT		Apache			
8	MySQL presentation; MySQL administration					
9	MySQL databases Server,					
10	Examples of Web Database Applications PHP					
11	Database design – simple examples					
12	Database design – more complex examples					
13	Project Work – Web Database Applications					
14	4 Final laboratory work evaluation					
Biblio	Bibliography					
1. F	1. Raghu Ramakrishnan and Johannes Gehrke - Database Management Systems, McGraw-Hill Science,					

- Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom *First Course in Database Systems*, Prentice Hall, 2001
- 3. Philip Greenspun SQL for Web Nerds, http://philip.greenspun.com/sql/

4. Ryan K. Stephens, Ronald R. Plew, - Teach Yourself SQL in 21 Days, Prentice Hall, 1999

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Database is a topic of Computer Engineering and Information Technology field, combining fundamental aspects and practical software tools. Explaining to students the principles of database implementation, database design and implementing database application. Course content it is similar to database courses in other universities in the country and abroad.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final grade
				methods	3	
Course		Solving problems and answers		2.5 hours written		60% (a grade greater
		to theoretical questions		evaluation		than 5 is mandatory)
Applications		Presenting databases		Ongoing		30% (a grade greater
		implemented in 2 different		evaluation		than 5 is mandatory)
		DBMS; Knowing Structured				
		Query Language				
		Project Work: Web Database		Final presentation		10%
		Applications				
10.4 Minimum standard of performance						
Solving practical laboratory work, implementing a database and a database application, solving the SQL						
Structured Query Language problem and another two out of the four other subjects.						

Course responsible S.I.dr.ing. Calin Cenan

	1. Data about the program of stu	ay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	21.

1. Data about the program of study

2. Data about the subject

2.1	Subject name						Assembly Language Programming					
2.2	2 Subject area						Computer Science and Information Technology					
2.3	3 Course responsible/lecturer Assoc. Prof. dr. eng. Emil Cebuc- Emil.Cebuc@cs.utcluj.ro							:luj.ro				
2.4	Teachers in charge of applications						Assoc. Prof. dr. eng. Emil Cebuc- Emil.Cebuc@cs.utcluj.ro					
						As. [Dr. Ing. Drago	s Lisman - <u>dr</u>	agos.	<u>isman@mecon.u</u>	utcluj.ro	
						Ing.	Bogdan Laslo	- bogdan.las	slo@e	merson.com		
2.5 Year of study II 2.6 Semester 3 2.7 Assessment exam 2.8								2.8	Subject	DS/OB		
	category											

3. Estimated total time

Sem	Subject name	Lectur	Арр	olicat	tion	Lectur	Арр	licat	tion	Individual		
		е	e s		е	S			study	TOTAL	Credit	
		[hour	s / v	veek	.]	[h	ours	/ se	mes	ster]		
			S	L	Ρ		S	L	Ρ			
3	Assembly Language Programming	2	-	2	-	28	-	28	-	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Indiv	idual study							Hours
Manu	ual, lecture material and notes, bibliog	jraphy						24
Supp	lementary study in the library, online	and in th	e fielo	1				24
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	ssays			22
Tuto	ing							2
Exan	ns and tests							2
Othe	r activities							0
3.7	3.7 Total hours of individual study 74							
3.8	Total hours per semester		130					
3.9 Number of credit points 5								

4. Pre-requisites (where appropriate)

4.1	Curriculum	None
4.2	Competence	None

5. Requirements (where appropriate)

5.1	For the course	Projector, Blackboard
5.2	For the applications	PC with 32 bit operating system , 1 PC per student, DOSBox

6. Specific competences

Professional competences	 C2 Designing hardware, software and communication components (2 credits) C2.1 Describing the structure and functioning of computational, communication and software components and systems C2.2 Explaining the role, interaction and functioning of hardware, software and communication components C2.3 Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
	C2.5 Implementing hardware, software and communication systems
Cross competences	N/A

7.1	General objective	Knowledge of Microprocessor structure and low level programming
7.2	Specific objectives	Is able to use various addressing modes, assembly language
		programming techniques, use specific programming tools

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	C1. Introduction, data representation	PowerPoint	
2	C2. ISAx86 Architecture, addressing modes	presentations,	
3	C3. x86 Instruction format	Examples of	
4	C4. MASM x86 directives ALP program prototypes	Program listings,	
5	C5. ISA x86 Instruction set - data transfer, address transfer arithmetic	lecture	
	and logical instructions		
6	C6. ISA x86 Instruction set – shift, rotate, flow control instructions		
7	C7. ISA x86 Instruction set – 386, software interrupt, string instructions		
8	C8. Coprocessor structure and operation, data transfer, arithmetic		
	instructions		
9	C9. Coprocessor math functions, misc. instructions		
10	C10. MMX extensions – MMX calculus, MMX instructions		
11	C11. Protected mode operations, memory management, segmentation,		
	privilege levels		
12	C12. System function calls		
13	C13. Multiple module programs		
14	C14. Program optimisation		
Biblio	graphy		
1.	PPT lecture notes at: ftp.utcluj.ro/pub/users/cemil /ALP		
2. L	D. Gorgan, G. Sebestyen, Proiectarea calculatoarelor", Editura albastra, 2005		
3. F	R. Hyde R. Hyde, "AoA - The Art of Assembly language", la adresa: webster.	cs.ucr.edu/AoA/DO	S/pdf/
4. 8	5. Nedevschi, "Microprocesoare", Editura UTCN, 1994	-	NI 4
8.2.7	Applications (Laboratory)	Teaching methods	Notes
1	L1. Information Representation		
2	L2. Tools, ISA x86 Architecture, addressing modes		
3	L3. Addressing Modes and address calculus	Interactive	
4	L4. Pseudo instruction Usage	tutoring,	
5	L5. ISA x86: Instructions data transfer, arithmetical and logical	learn bye	
6	L6. ISA x86: Instructions: shift and rotate	example	
7	L7. ISA x86: Instructions: flow control, other instructions		
8	L8. Real number		

9	L9. Complex operations							
10	L10. Multimedia operations							
11	L11. Program optimisation							
12	L12. System function call							
13	L13. Advanced programming techniques							
14	L14. Colloquium							
Biblio	ography							
Art o	Art of assembly language, Randall Hyde available at: ftp://ftp.utcluj.ro/pub/users/cemil/asm/							
Lab \	Norkbook, Emil Cebuc et, All, Available at; ftp://ftp.utclui.ro/pub/users/cemil/a	sm/labs/						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course and lab contents are discussed and compared to similar courses in other universities and with software companies like Bitdefender

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade				
Course		Knows microprocessor structure, number representation, x86 basic instruction set, system function calls and assembly program structure		Midterm written exam Final Oral exam Admittance to final exam conditioned by successful lab colloquium		2/9 4/9				
Applications		Is able to develop a medium size program using specific tools		Lab Colloquium		3/9				
10.4 Minimur	10.4 Minimum standard of performance									
Is able to deve	elop a	a medium size interactive assembly	langu	lage program using sp	pecific	tools				

Course responsible Assoc.prof.dr.eng. Emil Cebuc

	1. Data about the program of stu	ay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	22.

1. Data about the program of study

2. Data about the subject

2.1	Subject name				Fore	Foreign Language I (English, French, German - Technical					
						docu	documents elaboration)				
2.2	Subject area					Com	Computer Science and Information Technology				
2.3	Course respon	nsible	e/lec	turer		Conf	Conf.univ.dr. Sonia Munteanu				
2.4	Teachers in cl	harge	e of a	applications		-					
2.5	1.5 Year of study II 2.6 Semester 3					2.7	Assessment	Colloquium	2.8	Subject	DC/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur	Ар	plicat	tion	n Lectur Application		ion	Individual		0	
•		е	S		е	S		study	IOTAL	Credit		
		[hour	s/v	veek	.]	[hours / semes		ster]				
			S	L	Ρ		S	L	Ρ			
3	Foreign Language I (English, French, German - Technical documents elaboration)	2	-	-	-	28	-	-	-	-	28	1

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-
Individual study							Hours
Manual, lecture material and notes, bibliogr	raphy						-
Supplementary study in the library, online and in the field					-		
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					-		
Tutoring					-		
Exams and tests							-
Other activities							-
3.7 Total hours of individual study		-					
3.8 Total hours per semester		28					
3.9 Number of credit points		1					

4. Pre-requisites (where appropriate)

4.1	Curriculum	Foreign language seminars I, II
4.2	Competence	English language competence, B2 level in CEFRL

5. Requirements (where appropriate)

5.1	For the course	Study of research and journal articles
5.2	For the applications	-

6. Specific competences

Professional competences	N/A
Cross competences	CT3 – Demonstrating the spirit of initiative and action for updating professional, economical and organizational culture knowledge (1 credit)

7.1	General objective	Development of integrated skills in an engineering professional context
7.2	Specific objectives	At the end of this course, students should be able to: -Master documenting strategies, information processing; writing according to discourse patterns in specific purposes contexts; - Use strategies for handling difficult written text on a variety of science and academic related topics; - Comprehend and produce discipline appropriate text and genre. - Use lexical and grammar structures at +B2 language competence levels, according to CEFR

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Hierarchical structure of grammar. Natural language processing; morphology, syntax, discourse. Language knowledge in technology development for language processing and artificial intelligence.	lecture, problem-based learning,	
2	Student's research on NLP and AI topics which involve knowledge about language. Assignment discussion	case–study, small group	
3	Word structure: inflected and derivate words. Derivation as a means of creating technical vocabulary.	discussions and task solving,	
4	Phrases: noun headed phrases, verb headed phrases, adjective headed phrases, and preposition headed phrases.	assignment discussion	
5	Simple and complex sentences. Frequently used phrase/sentence structures in technical texts: coordination and subordination in finite and non-finite clauses.		
6	Cohesion and coherence in discourse: syntactic parallelism, sentence rephrase, nominalization, lexical choice, emphasis.		
7	Structure of information in paragraphs: general-particular patterns, theme- rheme, hypothesis and validation.		
8	Mid term evaluation.		
9	The informative function of science discourse: information structure, impersonal expression, nominalized theme.		
10	Functional and rhetorical organization of written science discourse: genres (textbooks, journal articles and scientific posters).		
11	Research articles vs. review articles in professional journals. Content, rhetorical structure, communicative purpose.		
12	Formulaic language in science discourse: multifunctional lexical bundles. Interpersonal function of science discourse: hedges, boosters and author mention in science discourse.		
13	Disciplinary variation in science discourse: professional communities, discourse communities. Selecting from language resources according to disciplinary practices.		

14	Final test						
Biblio	graphy						
1	. Munteanu, SC (2013) Academic English for Science and Engineering. C	luj-Napoca: Casa C	artii de				
	Stiinta. ISBN 978-606-17-0398-2.						
2	2. Swales John M. & Christine B. Feak (2001) Academic Writing For Gradua	ate Students - Esser	ntial				
	Tasks And Skills, Ann Arbor: The University Of Michigan Press.						
3	8. Hyland Ken (2006) English For Academic Purposes - An Advanced Reso	urce Book, London:					
	Routledge						
8.2.	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes				
1	1 -						
Bibliography							
-							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Mastering a foreign language will support students in a more flexible integration in the labour market, and have improved personal development. The introduction in the language for specific purposes and academic discourse will facilitate reading and writing more documents in the field

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
-				methods	3	grade
Course		Assessment completion in due time; Ability to comprehend below and above sentence syntactic and morphologic structures specific to science discourse; to read from sources, to comprehend complex text (journal articles, textbooks); Ability to produce a conference poster based on a published research article		- Multiple choice quizzes - Case-study and practical application of knowledge: Conference poster		mid-term test = 50% students' posters = 40% classwork = 10% total = 100%
Applications						
10.4 Minimur	n sta	ndard of performance				
Assignment c	omple	etion, minimum 80% of the midterm	evalu	uation, min 80% on ac	cura	cy of poster.

Course responsible Assoc.prof.dr. Sonia Munteanu

Head of department Conf.univ.dr. Ruxanda Literat