	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Mathematics
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	8.

2. Data about the subject

2.1	Subject name				Math	Mathematical analysis II (Integral calculus and differential					
					equations)						
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	3 Course responsible/lecturer				Prof. dr. Dumitru Mircea Ivan - mircea.ivan@math.utcluj.ro						
2.4	2.4 Teachers in charge of applications				Assoc.prof.dr. Mircea Rus – rus.mircea@math.utcluj.ro						
2.5	Year of study	Ι	2.6	Semester	2	2.7	Assessment	exam	2.8	Subject	DF/OB
										category	

3. Estimated total time

Sem	Subject name	Lectur e	Ар	plica s	tion	Lectur e	Арр	licat s	ion	Individual study	TOTAL	Credit
		[hours / week.]		.]	[hours / semester]				ster]			
			S	L	Ρ		S	L	Ρ			
2	Mathematical analysis II (Integral calculus and differential equations)	2	2	-	-	28	28	-	-	69	125	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliog	raphy						20
Supplementary study in the library, online a	and in th	e fielo	ł				20
Preparation for seminars/laboratory works,	, homew	ork, re	eports, portfolios, e	ssays			20
Tutoring							5
Exams and tests							4
Other activities							0
3.7 Total hours of individual study		69					
3.8 Total hours per semester 125							
3.9 Number of credit points 5							

4. Pre-requisites (where appropriate)

-		
4.1	Curriculum	Basic knowledge Integral Calculus
4.2	Competence	Competences in elementary Integral Calculus: primitives, definite integrals.

5. Requirements (where appropriate)

5.1	For the course	Videoprojector
5.2	For the applications	Videoprojector

Professional competences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts C1.1 - Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication systems C1.2 - Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 - Building models for various components of computing systems C1.4 - Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 - Providing theoretical background for the characteristics of the designed systems
Cross competences	N/A

7.1	General objective	A presentation of the concepts, notions, methods and fundamental
		techniques used in integral calculus.
7.2	Specific objectives	Use of the integral calculus in order to solve problems in
		engineering.

8.1. L	ecture (syllabus)	Teaching	Notes				
4	Ordinary differential equations (ODE) of order and	methods Evaluation					
1	Linear homogeneous ODE with constant coefficients	Explanation					
2	Linear nomogeneous ODE with constant coefficients	Domonstration					
3	Linear non-homogeneous ODE with constant coefficients	Demonstration					
4	Positive and linear functionals.	Collaboration					
5	Riemann-Stieltjes integral. Primitives.	Collaboration					
6	Improper integrals.	Interactive					
7	Integrals depending on parameters.	activities					
8	Special functions						
9	Paths. Vector fields. Line integrals with respect to the coordinates. Circulation.						
10	Differential Forms. Exact differential forms. Path-independence. Work.						
11	Line integrals with respect to the arc length. Total mass, center of mass.						
12	Double integral. Green-Riemann formula.						
13	Surface integral. Flux of vector field across a surface. Stokes' Theorem.						
14	Volume integral. Gauss-Ostrogradsky Theorem. MATHEMATICA capabilities.						
Biblio	graphy						
1	. Mircea Ivan. Elemente de calcul integral. Mediamira, Cluj-Napoca, 2003.	ISBN 973-9357-40-	7.				
2	2. Dumitru Mircea Ivan. Calculus. Editura Mediamira, Cluj-Napoca, 2002. IS	SBN 973-9358-88-8.					
8.2.	Applications (Seminars)	Teaching methods	Notes				
1	Ordinary differential equations (ODE) of order one (Exercises)						
2	Linear homogeneous ODE with constant coefficients (Exercises)						
3	Linear non-homogeneous ODE with constant coefficients (Exercises)						
4	Positive and linear functionals (Exercises)	Explanation					
5	Riemann-Stieltjes integral. Primitives (Exercises)						
6	Improper integrals (Exercises)	Demonstration					
7	Integrals depending on parameters(Exercises)						
8	Special functions (Exercises)	Collaboration					
9	Line integrals with respect to the coordinates(Exercises)						
10	Differential Forms (Exercises)						
11	Line integrals with respect to the arc length. (Exercises)						
12	Double integral Green-Riemann formula (Exercises)						
13	Surface integral (Exercises)						

14	Volume integral. MATHEMATICA related capabilities. (Exercises)						
Bibliography							

- 1. Dumitru Mircea Ivan, et al. Analiză matematică Culegere de probleme pentru seminarii, examene și concursuri. Editura Mediamira, Cluj-Napoca, 2002. ISBN 973-9357-20-2.
- 2. Mircea Ivan et al. Culegere de Probleme Pentru Seminarii, Examene și Concursuri. UT Press, Cluj-Napoca, 2000.

Collaboration with engineers in order to identify and solve problems raised by the market.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10. 3	Weight in the final grade
Course		Abilities of understanding and using creatively the concepts and proofs		Written examination		30%
Applications		Abilities of solving problems and applying algorithms		Written examination		70%
10.4 Minimum standard of performance						
Ability to present coherently a theoretical subject and to solve problems with practical content.						

Course responsible Prof.dr. Mircea Ivan

	5. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	9.

6. Data about the program of study

7. Data about the subject

2.1	Subject name					Asse	Assembly Language Programming					
2.2	2.2 Subject area Computer Science and Information Technology											
2.3	3 Course responsible/lecturer Assoc. Prof. dr. eng. Emil Cebuc- Emil.Cebuc@cs.utcluj.ro							luj.ro				
2.4	4 Teachers in charge of applications						Assoc. Prof. dr. eng. Emil Cebuc- Emil.Cebuc@cs.utcluj.ro					
						As. [Dr. Ing. Drago	s Lisman - <u>dra</u>	agos.l	<u>isman@mecon.u</u>	utcluj.ro	
						Ing.	Bogdan Laslo	- bogdan.las	lo@e	merson.com		
2.5	Year of study		2.6	Semester	3	2.7	Assessment	exam	2.8	Subject	DS/OB	
	-									category		

8. Estimated total time

Sem	Subject name	Lectur	Ар	olicat	tion	Lectur	Арр	olicat	tion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			[hours / semester]			ster]				
			S	L	Ρ		S	L	Ρ			
3	Assembly Language Programming	2	1	2	-	28	14	28	-	30	100	4

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4	Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliog	graphy						10
Supp	plementary study in the library, online	and in th	e fielo	1				7
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							10	
Tuto	ring							0
Exar	ns and tests							3
Othe	r activities							0
3.7	Total hours of individual study		30					
3.8	Total hours per semester		100					
3.9	Number of credit points		4					

9. Pre-requisites (where appropriate)

4.1	Curriculum	None
4.2	Competence	None

10. Requirements (where appropriate)

5.1	For the course	Projector, Blackboard
5.2	For the applications	PC with 32 bit operating system, 1 PC per student, DOSBox

Professional competences	 C2 Designing hardware, software and communication components (2 credits) C2.1 Describing the structure and functioning of computational, communication and software components and systems C2.2 Explaining the role, interaction and functioning of hardware, software and communication components C2.3 Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
	C2.5 Implementing hardware, software and communication systems
Cross competences	N/A

7.1	General objective	Knowledge of Microprocessor structure and low level programming
7.2	Specific objectives	Is able to use various addressing modes, assembly language
		programming techniques, use specific programming tools

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	C1. Introduction, data representation	PowerPoint	
2	C2. ISAx86 Architecture, addressing modes	presentations,	
3	C3. x86 Instruction format	Examples of	
4	C4. MASM x86 directives ALP program prototypes	Program listings,	
5	C5. ISA x86 Instruction set – data transfer, address transfer arithmetic	lecture	
	and logical instructions		
6	C6. ISA x86 Instruction set – shift, rotate, flow control instructions		
7	C7. ISA x86 Instruction set – 386, software interrupt, string instructions		
8	C8. Coprocessor structure and operation, data transfer, arithmetic		
	instructions		
9	C9. Coprocessor math functions, misc. instructions		
10	C10. MMX extensions – MMX calculus, MMX instructions		
11	C11. Protected mode operations, memory management, segmentation,		
	privilege levels		
12	C12. System function calls		
13	C13. Multiple module programs		
14	C14. Program optimisation		
Biblio	graphy		
1.	PPT lecture notes at: ftp.utcluj.ro/pub/users/cemil /ALP		
2. L	D. Gorgan, G. Sebestyen, Proiectarea calculatoarelor", Editura albastra, 2005	,	.
3.	, "AoA - The Art of Assembly language", la adresa: webster.	cs.ucr.edu/AoA/DO	S/pdf/
4. 8	5. Nedevschi, "Microprocesoare", Editura UTCN, 1994		
8.2. /	Applications (Laboratory)	Teaching methods	Notes
1	L1. Information Representation		
2	L2. Tools, ISA x86 Architecture, addressing modes		
3	L3. Addressing Modes and address calculus	Interactive	
4	L4. Pseudo instruction Usage	tutoring,	
5	L5. ISA x86: Instructions data transfer, arithmetical and logical	learn bye	
6	L6. ISA x86: Instructions: shift and rotate	example	
7	L7. ISA x86: Instructions: flow control, other instructions		
8	L8. Real number		

9	L9. Complex operations		
10	L10. Multimedia operations		
11	L11. Program optimisation		
12	L12. System function call		
13	L13. Advanced programming techniques		
14	L14. Colloquium		
Biblic	ography		
Art o	f assembly language, Randall Hyde available at: ftp://ftp.utcluj.ro/pub/users/c	<u>emil/asm/</u>	
Lab \	Norkbook, Emil Cebuc et, All, Available at: ftp://ftp.utclui.ro/pub/users/cemil/a	sm/labs/	

Course and lab contents are discussed and compared to similar courses in other universities and with software companies like Bitdefender

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Knows microprocessor structure, number representation, x86 basic instruction set, system function calls and assembly program structure		Midterm written exam Final Oral exam Admittance to final exam conditioned by successful lab colloquium		2/9 4/9
Applications		Is able to develop a medium size program using specific tools		Lab Colloquium		3/9
10.4 Minimur	n stai	ndard of performance				
Is able to deve	elop a	a medium size interactive assembly	langu	lage program using sp	pecific	tools

Course responsible Conf. dr. Emil Cebuc

1.1	Institution	The Technical University of Cluj-Napoca						
1.2	Faculty	Automation and Computer Science						
1.3	Department	Computer Science						
1.4	Field of study	Computer Science and Information Technology						
1.5	Cycle of study	Bachelor of Science						
1.6	Program of study/Qualification	Computer Science/ Engineer						
1.7	Form of education	Full time						
1.8	Subject code	10.						

1. Data about the program of study

2. Data about the subject

2.1	Subject name				Electrotechnics						
2.2	Subject area					Compu	Computer Science and Information Technology				
2.3	Course respon	nsible	e/lec	turer	er Assoc. prof. dr. eng. Laura Darabant – Laura.Darabant@et.utcluj.ro						
2.4	Teachers in cl	narge	e of a	applications	;	Assoc.	prof. dr. eng.	Laura Daraba	ant –	Laura.Darabant	@et.utcluj.ro
2.5	Year of study	Ι	2.6	Semester	2	2.7 Assessment exam 2.8 Subject DID/OB					
										category	

3. Estimated total time

Sem	Subject name	Lectur Application e s		Lectur e	Application s			Individual study	TOTAL	Credit		
		[hours / week.]			[hours / semester]							
			S	L	Ρ		S	L	Ρ			
2	Electrotechnics	2	-	1	-	28	-	14	-	83	125	5

3.1	Number of hours per week	3	3.2	of which, course	2	3.3	applications	1
3.4	Total hours in the teaching plan	42	3.5	of which, course	28	3.6	applications	14
Indiv	idual study							Hours
Manual, lecture material and notes, bibliography								23
Supplementary study in the library, online and in the field								22
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								25
Tutoring							10	
Exar	ns and tests							3
Other activities							0	
3.7	Total hours of individual study		83					-

3.8	Total hours per semester	125
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mathematics I, II; Physics
4.2	Competence	N/A

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	The presence of the lab is mandatory

Professional competences	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross competences	N/A

7.1	General objective	Operating with basic concepts of electrical engineering
7.2	Specific objectives	 Acquiring theoretical knowledge's regarding electrotechnics. Acquiring practical skills regarding electrical circuits.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Electric and magnetic quantities. Static electric and magnetic fields (the electric field in free space and in material, electric current, the magnetic field in free space and in material)	Multimedia,	
2	Laws and theorems of electromagnetic field	PowerPoint	
3	Electrical capacitance, energy and forces	Presentations,	
4	Magnetic circuits. Self-inductance and mutual inductance. Magnetic energy and forces.	Demonstration board	
5	Basic concepts, units and laws of circuit theory (characteristic values, power in sinusoidal regime, representation of sinusoidal functions by vectors and complex numbers)		
6	The characterisation of the linear circuits in complex plane, the complex form of some theorems		
7	Equivalent impedances (series and parallel connection, without mutual inductance, with mutual inductance, real condenser, real inductance, air core transformer)		
8	Resonance (in series, parallel, real, inductively coupled circuits, power factor improvement)		
9	Two-port networks (equations, equivalent circuits, open-circuit and short- circuit tests, characteristic impedance, propagation constant, filters)		
10	Network theorems (th superposition theorem, Thevenin-Norton theorem, mesh or loop analysis, node analysis, matrix methods)		
11	Transient regime of linear circuits (continuity conditions, transient behaviour of the R-L, R-C and R,L,C)		
12	Transient regime of linear circuits (the Laplace transform, Duhamel integral, state variable method)		
13	Study-state periodic non-sinusoidal regime (Fourier expansion, power, network analysis)		
14	Transmission lines (the primary line parameters, the equations of the transmission line, voltage and current waves on long lines, distortionless lines)		
Biblio	graphy		
1	 The Theory of Electric Circuits, authors: RV Ciupa, V. Ţopa, Casa Carti 2003, ISBN 973-9204-98-8 	de Stiinta Publishi	ng House,
	2. Simion, E., Maghiar, T., <i>Electrotehnica</i> , F.D.P., Bucuresti, 1982		

Simion, E., Maghiar, T., *Electrotennica*, E.D.P., Bucureşti, 1982
 Mocanu, C. I., *Teoria câmpului electromagnetic*, E.D.P., Bucureşti, 1981

8.2. /	Applications (Laboratory)	Teaching methods	Notes			
1	Determination of the spectrum and equipotential surfaces of an electric					
	field using a electrokinetic model					
2	The study of a magnetic circuit. The measurement of the iron losses using					
	an oscilloscope					
3	Representation of sinusoidal functions by vectors and complex numbers	Practical				
4	Analysis of the R,L,C series and parallel circuits, of the voltage and	exercises				
	current resonances					
5	Power transfer in inductively coupled circuits					
6	The study of a circuit in non-sinusoidal regime					
7	The study of the transient regime, methods for solving circuits in transient					
	regime					
Biblio	Bibliography					
1	I. Rădulet, R., Bazele electrotehnicii, Probleme, E.D.P., Bucuresti, 1981					

- Raduleţ, R., Bazele electrotennicii. Probleme., E.D.P., Bucureşti, 1981
 Dan Doru Micu, Laura Darabant, Denisa Stet, Mihaela Cretu, Andrei Ceclan, Levente Czumbil,
- Teoria circuitelor electrice. Probleme, UT Press, Cluj-Napoca, 978-606-737-140-6, 2016, 280 pagini;

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade			
Course				Three hours written examination, written test (WT)		0.8 WT			
Applications				Laboratory works (LW)		0.2 LW			
10.4 Minimur	n stai	ndard of performance							
N=0,8 WT + 0,2 LW									
Pass condition	ns: : I	N≥5; LW≥5							

Course responsible Assoc.prof.dr.eng. Laura Darabant

	1. Data about the program of stu	ay
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	11.

1. Data about the program of study

2. Data about the subject

2.1	Subject name						Digital Systems Design					
2.2	.2 Subject area					Corr	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer					Prof	Prof. dr. eng. Cret Octavian Augustin – Octavian.Cret@cs.utcluj.ro					
2.4	Teachers in charge of applications						As.Drd.Ing. Diana Irena Pop – <u>Diana.Pop@cs.utcluj.ro</u>					
	Dipl. eng. Mihai Timar – mitis2010@gmail.com											
2.5	Year of study	Ι	2.6	Semester	2	2.7	Assessment	exam	2.8	Subject	DID/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur e	Ар	olicat s	tion	Lectur e	Арр	olicat s	tion	Individual study	TOTAL	Credit
		[hour	rs / v	veek	.]	[h	ours	s / se	me	ster]		
			S	L	Ρ		S	L	Ρ			
2	Digital Systems Design	3	-	2	-	42	-	28	-	80	150	6

3.1	Number of hours per week	5	3.2	of which, course	3	3.3	applications	2
3.4	Total hours in the teaching plan	70	3.5	of which, course	42	3.6	applications	28
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliog	graphy						25
Supplementary study in the library, online and in the field							17	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							17	
Tutoring							6	
Exams and tests							9	
Other activities							0	
3.7 Total hours of individual study 80								

	~	
3.8	Total hours per semester	150
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	Logic Design
4.2	Competence	At least one high level programming language (i.e. C or PASCAL)

5. Requirements (where appropriate)

5.1	For the course	A minimum of 75% course attendance rate is mandatory for being
		admitted to the final exam.
5.2	For the applications	Preliminary preparation of summaries from the indicated bibliography (laboratory textbook)

Professional competences	 C2 – Designing hardware, software and communication components C2.1 - Describing the structure and functioning of computational, communication and software components and systems C2.2 – Explaining the role, interaction and functioning of hardware, software and communication components C2.3 – Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies C2.4 – Evaluating the functional and non-functional characteristics of the computing systems using specific metrics C2.5 – Implementing hardware, software and communication systems
Cross competences	N/A

7.1	General objective	• The main objective of this discipline is to give to the students the bases of Digital Systems Design, in order to make them able to analyze, design and implement any complex digital system.
7.2	Specific objectives	 To reach this goal, students will learn to: Apply Digital System Design principles and descriptive techniques; Understand various aspects of Automata Theory with applications in the field of Digital Systems Design; Describe any digital system in VHDL; Utilize programmable devices such as FPGAs and PLDs to implement digital systems.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes		
1	VHDL hardware description language – basic design units, signals				
2	VHDL hardware description language – generics, constants, operators,				
	data types, attributes				
3	VHDL hardware description language – sequential domain				
4	VHDL hardware description language – concurrent domain				
5	Creating testbenches for simulating and testing circuits in VHDL				
6	Automata (Finite State Machines) Theory – classification, definitions,				
	formal models	Blackboard			
7	Microprogramming				
8	Microprogrammed Devices discussions				
9	Designing Synchronous Automata				
10	Analysis and Design (Synthesis) of Asynchronous Automata (I)				
11	Analysis and Design (Synthesis) of Asynchronous Automata (II)				
12	Automata Identification				
13	Lossless Machines				
14	Linear Automata				
Diblio					

Bibliography

1. Digital Design Principles and Practices, John F. Wakerly, Prentice-Hall, 2000.

2. Automate programabile, Th. Borangiu, R. Dobrescu, Ed. Academiei, 1986.

3. Advanced Digital Logic Design Using VHDL, State Machines, and Synthesis for FPGA's, Sunggu Lee, Thomson-Engineering; 1 edition (April 25, 2005), ISBN 0534466028.

4. PowerPoint slides for VHDL and Automata Theory lectures + sets of problems for the individual study: http://users.utcluj.ro/~lucia/index.html

8.2. <i>I</i>	Applications (Laboratory)	Teaching	methods	Notes
1	Introduction to VHDL	Practical	work	N/A

2	Basic design units in VHDL	on test boards,		
3	Signals, generics, constants, in VHDL	FPGA boards,		
4	Operators, data types in VHDL	specialized		
5	Attributes in VHDL	software,		
6	Sequential domain. Processes in VHDL	blackboard		
7	Sequential statements in VHDL	presentations,		
8	Concurrent domain in VHDL	supplemental		
9	Concurrent statements in VHDL	explanations		
10	Sub-programs in VHDL and discussions			
11	Testbenches in VHDL			
12	Standard and predefined packages in VHDL			
13	Mini-projects delivery			
14	Lab test			
Biblic	baraphy			

- 1. Limbajul VHDL, Îndrumător de laborator, Ediția a-3-a. O. Creț, L. Văcariu, Ed. U.T. Press, Cluj-Napoca, 2007.
- 2. PowerPoint slides for VHDL and Automata Theory lectures + sets of problems for the individual study: http://users.utcluj.ro/~lucia/index.html

• Since this discipline is a basic one in Computer Science, its content is "classic" but also modern because it familiarizes students with the modern principles of Logic Design (utilization of modern simulation and synthesis tools, FPGA and CPLD-based design etc.). Its contents have been discussed with major academia and industry actors from Romania, Europe and U.S.A. and it has been evaluated several times by Romanian Governmental Agencies like CNEAA and ARACIS.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final
		Problems solving abilities		Written Exam		60%
Course		Presence, (Inter)activity				
Homeworks		Problems solving abilities		Practical Evaluation		20%
Applications		Problems solving abilities		Practical Evaluation (hands-on)		20%
		Presence, (Inter)activity		, ,		
10.4 Minimu	m sta	ndard of performance	•			
 Modeling ar 	nd sol	ving typical Digital Systems Des	ian probl	ems using the domain-s	pecific fo	ormal apparatus

Course responsible Prof.dr.eng. Octavian Cret

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	12.

2. Data about the subject

2.1	1 Subject name					Data	Data Structures and Algorithms				
2.2	2.2 Subject area					Com	Computer Science and Information Technology				
2.3	2.3 Course responsible/lecturer					Lect	.ect. dr. eng. Marius Joldoş – Marius.Joldos@cs.utcluj.ro				
2.4	Teachers in cl	harge	e of a	applications		As.d	As.dr.eng. Ciprian Pocol – Ciprian.Pocol@cs.utcluj.ro				
2.5	Year of study	Ι	2.6	Semester	2	2.7	Assessment	exam	2.8	Subject	DID/OB
						category					

3. Estimated total time

Sem	Subject name	Lectur e	ectur Application Lec e s e		Lectur e	Application s		Application Individual s study		TOTAL	Credit	
		[hour	rs / v	veek	.]	[h	ours	s / se	mes	ster]		
			S	L	Ρ		S	L	Ρ			
2	Data Structures and Algorithms	3	-	2	-	42	-	28	-	80	150	6

3.1	Number of hours per week	5	3.2	of which, course	3	3.3	applications	2
3.4	Total hours in the teaching plan	70	3.5	of which, course	42	3.6	applications	28
Indiv	idual study							Hours
Manu	ual, lecture material and notes, bibliog	Iraphy						30
Supp	lementary study in the library, online	and in th	e fielo	ł				25
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, e	essay	s		10
Tuto	ring							10
Exan	ns and tests							5
Othe	r activities							0
3.7	Total hours of individual study							80
3.8	Total hours per semester							150
3.9	Number of credit points							6

4. Pre-requisites (where appropriate)

	1 1	
4.1	Curriculum	Computer Programming course
4.2	Competence	Programming in C

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

al es	 C1 – Operating with basic Mathematical, Engineering and Computer Science concepts C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity,
ession	C1.2 – Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems
Prof	 C1.3 – Building models for various components of computing systems C1.4 – Formal evaluation of the functional and non-functional characteristics of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed systems
Cross competences	N/A

7.1	General objective	To acquaint the students with a wide range of fundamental algorithms and data structures. To learn how to use general methods for development of algorithms, as well as mathematical tools for analyzing the correctness and efficiency of algorithms.
7.2	Specific objectives	 To choose the appropriate data structure for modelling a given problem. To compare and contrast the cost and benefits of dynamic and static structure implementations.
		 To compare iterative and recursive solutions for elementary problems. To determine when a recursive solution is appropriate for a problem.
		• To determine the time and space complexity of simple algorithms and recursively defined algorithms.
		• To design and implement algorithms using development techniques such as: greedy, divide-and-conquer, backtracking, dynamic programming, branch and bound.
		• To write C programs that use data structures such as: arrays, linked lists, stacks, queues, trees, hash tables, and graphs.
		 To implement in C the most common sorting algorithms.

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	About the course (objectives, outline, recommended reading). Problem solving. Notions of Algorithmics (growth of functions, efficiency, programming model). Stacks, queues. Lists	Lectures, demos and discussions	Uses a video- projector
2	More on lists. Implementation issues.		projocici
3	Trees – definitions, traversals. ADT Tree. Implementations. Binary Search Trees.		
4	Sets ADTs and Implementations. Dictionary ADT. Hash Tables. Mapping ADT.		
5	Priority Queue ADT. Tries		
5	Advanced Set Representation Methods. AVL trees. 2-3 Trees. Union-Find Set ADT.		
6	Directed Graphs. Definitions. Representations. ADT's. Single Source Shortest Path Problem (Dijkstra, Bellman-Ford, Floyd-Warshall). Traversals for DGs. Parenthesis Lemma. DAGs. Topological Sort		
7	Undirected Graphs. Terminology. Free Trees. Graph Representations. Graph Traversals (depth-first, breadth-first). Articulation points & Biconnected Components.		
8	Algorithm Design Techniques I. Brute Force Algorithms. Greedy Algorithms.		
9	Algorithm Design Techniques I. Divide-and-Conquer.		
10	Algorithm Design Techniques II. Dynamic Programming.		
11	Algorithm Design Techniques III. Backtracking. Search Tree Strategies (branch and bound)		
12	Algorithm Design Techniques IV. Search Tree Strategies (branch and bound). Local Search.		

13	Internal Sorting		
14	Review		
Biblic	graphy	·	
1. Ał	no, Hopcroft, Ullman. Data Structures and Algorithms, Addison-Wesley, 427	pages, 1987.	
2. C	ormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 2nd edition. M	IT Press / McGraw	Hill, 1028
page	es, 2001.		
3. Pr	eiss, Bruno. Data Structures and Algorithms with object-Oriented Design Pa	tterns in C++, John	Wiley and
Sons	s, 660 pages, 1999 (freely available on the Web)		
8.2.	Applications (Laboratory)	Teaching	Notes
		methods	
1	Review of C Programming.		
2	Singly-linked Lists, Stacks and Queues.(Array-based and Dynamic Allocation		
	Implementations)		
3	Doubly Linked and Circular Lists		
4	Arbitrary Trees. Binary Trees		PCs

Binary Search Trees equippe 5 Tutoring, d with 6 Hash Tables. discussions, MinGW Laboratory Test 1 and assisted C and Graph Representations and Traversals (BFS, DFS and applications) 7 program Code-8 Algorithm Design I. Greedy development blocks Algorithm Design II. Divide & Conquer 9 IDE Algorithm Design III. Dynamic Programming and Heuristics. 10 Algorithm Design IV Backtracking and Branch and Bound 11 12 Review. Evaluation of extra-credit problems Laboratory Test 2 Bibliography 1. Moodle course Web Site available at https://labacal.utcluj.ro

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The contents of the course is in accordance with the ACM Computer Science Curricula recommendations.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		The understanding of the		Three in-class		65% = 50% W + 15%
		concepts taught and the ability		tests (T) + Final		Т
		to solve problems		Written exam (W)		
Applications		Quality of the assigned applications		Analysis and evaluation of the solved assignments		35%
10.4 Minimu	m sta	ndard of performance				
Correct soluti	ons fo	or min. 60% of the exam topics and	appli	cations		

Course responsible S.I.dr.eng. Marius Joldos

	1. Data about the program of study	
1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	13.

2. Data about the subject

2.1	Subject name						Foreign Language II (English, French, German)						
2.2	Subject area					Com	Computer Science and Information Technology						
2.3	2.3 Course responsible/lecturer												
2.4	.4 Teachers in charge of applications						Conf.dr. Sonia Munteanu – Sonia.Munteanu@lang.utcluj.ro						
						Lect	Lect. dr. Mona Tripon <u>Mona.Tripon@lang.utcluj.ro</u>						
						Asist	t.dr. Monica N	egoescu, <mark>Neg</mark>	oesc	<u>u@mail.utcluj.ro</u>			
2.5	Year of study I 2.6 Semester 2						Assessment	Colloquium	2.8	Subject	DC/OB		
	category												

3. Estimated total time

Sem	Subject name	Lectur Application e s		Lectur e	Application s			Individual study	TOTAL	Credit		
		[hour	week.]		[hours / semes		mes	ster]				
			S	L	Ρ		S	L	Ρ			
2	Foreign Language II (English, French, German)	-	2	-	-	-	28	-	-	22	50	2

3.1 Number of hours per week	2	3.2	of which, course	-	3.3	applications	2
3.4 Total hours in the teaching plan	28	3.5	of which, course	-	3.6	applications	28
Individual study							Hours
Manual, lecture material and notes, bibliogra	aphy						
Supplementary study in the library, online a	and in the	e fielc	1				
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							
Tutoring							
Exams and tests							
Other activities							
3.7 Total hours of individual study		22					
3.8 Total hours per semester		50					
3.9 Number of credit points		2					

4. Pre-requisites (where appropriate)

-							
4.1	4.1 Curriculum Completion of FL_I seminar						
4.2	Competence	Minimum B2 level (CEFR)					

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Class attendance, individual study and homework completion

	N/A
Professional Competences	
Cross competences	CT2 – Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the own results from the activity field

7.1	General objective	Students should acquire knowledge and integrated skills to communicate in a foreign language in professional (technical and engineering) contexts and on job related topics.						
7.2	Specific objectives	 At the end of this seminar, the students will be able to: Organize information for oral presentation; Evaluate audience and adapt spoken discourse to current informational and linguistic needs; Prepare and deliver a short presentation on a work/professional/own interest related topic; Use linguistic and paralinguistic means to various purposes and needs within their field of interest or profession. 						

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	•		
Biblio	graphy		
8.2. /	Applications (Seminars)	Teaching methods	Notes
1	Describing purpose of communication in work/professional related contexts; understanding and differentiating informative talks, persuasive talks, descriptive and argumentative talks.		
2	Assessing, predicting and describing audience needs and expectations.		
3	Formulating and prioritizing communicative goals: relating to audience expectations.		
4	Organizing information and structuring ideas: leading information vs details, supporting info and exemplifying, supplementary info. Introduction, body conclusion Q&A presentation format.	presentation of content, viewing professional	
5	Preparing for speaking to an audience: introducing self, purpose of talk, previewing info and stating policy on questions.	and observing	
6	Controlling voice and spoken production: prosody of language: word and sentence stress, pace, rhythm and intonation.	approach, case-	
7	Using language to make an impact: parallel structures, tripling, cumulative structures; coordination with voice and body language.	discussion, peer	
8	Preparing visual aid: PP slides – dos and donts; technical visual support (graphs, tables, etc.).	projects-based	
9	Introducing, describing and interpreting visual support data: talking about numerical data, describing trends in graphs/tables, summarizing and/or pointing to relevant numerical values/data.	loanning	
10	Presenting narrative data. Sequence markers and syntactic connectors. Transitional devices, discourse markers.		
11	Drawing a powerful conclusion: recapping main points, concluding, home-		

	take messages.		
12	Inviting questions, managing rapport, expressing opinion, attitude.		
13	Formal vs informal language – politeness in a foreign language. Using		
	humor, irony and personal anecdote to convey subtle meanings and gain		
	audience support.		
14	Students' presentations		
Biblic	ography		
1	. Adrian Wallwork (2010), English for Presentations at International Conference	ences, Springer.	
2	2. Andrew Bradbury (2006) Successful Presentation Skills, Kogan Page, Lor	ndon.	
3	3. Angela M. Thody (2006) Writing and Presenting Research, Sage Publicati	ons.	

- 4. Powell, M. (1998) Presenting in English (2nd edition), LTP, London.
- 5. Grussendorf, M. (2011) Oxford English for Presentations, Express series. OUP.

Mastering a foreign language will support students in a more flexible integration in the labour market, and have improved personal development. The introduction in the language for specific purposes and academic discourse will facilitate reading and writing more documents in the field of study, making informed decisions on various types of information, and keeping up-to-date with state of the art knowledge in students' professional field.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course						
Applications		Completion of tasks in class activities, homework or individual study solving, attendance to seminars, delivering own presentation.		On-going class-work evaluation; Rubric- based evaluation of students' presentation		Class-work evaluation – 30% Own presentation 70%
10.4 Minimur	n stai	ndard of performance				
at least 50% c	of all o	components of tasks solved corr	rectly			

Teachers in charge of applications Conf.dr. Sonia Munteanu Lect.dr. Mona Tripon Asist.dr. Monica Negoescu

Head of department Conf.univ.dr. Ruxanda Literat

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	14.

2. Data about the subject

2.1	Subject name						Sport I							
2.2	2 Subject area						Computer Science and Information Technology							
2.3	Course respon	nsible	e/lect	turer		-								
2.4	Teachers in cl	harge	e of a	applications		As.d	r. Adrian Suci	u						
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	verification	2.8	Subject	DC/OB			
										category				

3. Estimated total time

Sem	Subject name	Lectur e	Application s		Lectur e	Application s		Individual study	TOTAL	Credit		
		[hour	s/v	veek	.]	[h	ours	/ se	mes	ster]		
			S	L	Ρ		S	Г	Ρ			
1	Sport I	-	2	-	-	-	28	-	-	22	50	2

3.1 Number of hours per week 2 3.2 of which, course - 3.3 applications								
3.4 Total hours in the teaching plan 28 3.5 of which, course - 3.6 applications								
Individual study								Hours
Manual, lecture material and notes, bibliography								-
Supplementary study in the library, online and in the field							20	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							-	
Tutoring							-	
Exams and tests							2	
Other activities							-	
3.7 Total hours of individual study 22								

3.7	I otal hours of individual study	- 22
3.8	Total hours per semester	
3.9	Number of credit points	2

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	physically fit, necessary skills, knowledge, skills and abilities gained in
		classes I-XII

5. Requirements (where appropriate)

5.1	For the course	Muncii Blvd, no.103-105, Cluj-Napoca,
5.2	For the applications	Sports Hall, Muncii Blvd, no.103-105, Cluj-Napoca Outdoor and Fitness - Complex Polytechnic

Cross	Professional
competences	competences
CT2 – Identifying, describing and conducting processes in the projects management field, assuming different roles inside the team and clearly and concisely describing, verbally or in writing, in Romanian and in an international language, the own results from the activity field.	N/A

7.1	General objective	Harmonious physical developmentMaintain health at a high standard
7.2	Specific objectives	 Capacity development effort Learning and motor skills development Education volitional qualities

8. Contents

8.1. Lec	ture (syllabus)	Teaching methods	Notes		
1	-				
Bibliogra	Bibliography				
8.2. Ap	plications (Seminars)	Teaching methods	Notes		
1-2	Discipline demands and promotion criterion				
3-4	Testing of movement skills, capacities and knowledge accumulated				
	in secondary and high school				
5-6 Adaptation with physical effort		interactivo			
7-8 Learning of technical process (methods) accessible and possible		Interactive			
9-10 Repetition (improving) of technical process (methods).					
11-12	Learning new technical process (methods)				
13-14	Semestrial verification				
Bibliography					
1. Curs de Educație fizică – Litografiat UTC-N					
 Dezvoltare fizică generală pentru studenți – UTC-N 					
3. Cultură fizică pentru tineret - UTPRES					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Sports activity there in the curriculum of universities and faculties in the country and abroad. Content is consistent with the expectations of professional associates and employers epistemic community representative of the afferent program.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade	
Course							
Applications70% + 30% Frequency Active Participation, sports skills and advancesBy passing control samples100%							
10.4 Minimum standard of performance							
Fulfilling the criteria of evaluation with emphasis on active participation in class, advancements, sports skills.							

Course responsible As.dr. Adrian Suciu