1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	44.

2. Data about the subject

2.1	Subject name				Computer Networks						
2.2	2.2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr. eng. Vasile Dădârlat – vasile.dadarlat@cs.utcluj.ro					
2.4	Teachers in charge of applications			Lect. dr. eng. Peculea Adrian – Adrian.Peculea@cs.utcluj.ro				tcluj.ro			
	Lect. dr. eng. lancu Bogdan – Bogdan.lancu@cs.utcluj.ro					uj.ro					
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DID/OB
										category	

3. Estimated total time

	0.11											
Sem	Subject name	Lectur	Ар	plica	tion	Lectur	App	licat	ion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
7	Computer Networks	2	-	2	-	28	-	28	-	74	130	5

3.1	Number of hours per week	4	3.2	of which, course	2	3.	applications	2	
3.4 Total hours in the teaching plan 56 3.5 of which, course 28 3. applications									
						6			
Individual study								Hours	
Manual, lecture material and notes, bibliography								44	
Supplementary study in the library, online and in the field								10	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								20	
Tutoring									
Exams and tests									
Other activities									

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Basic knowledge in programming languages (C, Java)
		Computer architecture, Operating systems

5. Requirements (where appropriate)

	or reduitable (mises appro-	
5.1	For the course	N/A
5.2	For the applications	Classroom, PC with internet access

6. Specific competences

C2: Designing hardware, software and communication components
C2.1: Describing the structure and functioning of computational, communication and software components and systems
C2.2: Explaining the role, interaction and functioning of hardware, software and communication components
C2.3: Building the hardware and software components of some computing systems using algorithms, design methods, protocols, languages, data structures, and technologies
C2.4: Evaluating the functional and non-functional characteristics of the computing systems using specific metrics
C2.5: Implementing hardware, software and communication systems

N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Teamwork, working with partial and contradicting specifications
7.2	Specific objectives	Each student able to design LAN's software & hardware architecture

8. Contents

Introduction. Concepts, network types, characteristics, evolution, standards ISO-OSI Reference model and Internet's TCP/IP protocol stack. OSI abstract model presentation, description of protocol functions for every layer. General presentation for TCP/IP protocol stack Data transmission techniques. Data transmission concepts, analog and digital transmission techniques, coding, communication channels Types of computer networks. Architectures, evolution, topologies, physical parameters Physical level. Transmission media, characteristics, performances, connectors, structured cabling system Medium access control. Medium access techniques for local (wired and wireless) and wide area networks Data Link level. Functions, problems, protocols, case study: HDLC Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution protocol. Routing protocols	Votes
standards ISO-OSI Reference model and Internet's TCP/IP protocol stack. OSI abstract model presentation, description of protocol functions for every layer. General presentation for TCP/IP protocol stack Data transmission techniques. Data transmission concepts, analog and digital transmission techniques, coding, communication channels Types of computer networks. Architectures, evolution, topologies, physical parameters Physical level. Transmission media, characteristics, performances, connectors, structured cabling system Medium access control. Medium access techniques for local (wired and wireless) and wide area networks Data Link level. Functions, problems, protocols, case study: HDLC Local Area Computer Networks. Fundamentals, architectures, evolution Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution	
abstract model presentation, description of protocol functions for every layer. General presentation for TCP/IP protocol stack 3 Data transmission techniques. Data transmission concepts, analog and digital transmission techniques, coding, communication channels 4 Types of computer networks. Architectures, evolution, topologies, physical parameters 5 Physical level. Transmission media, characteristics, performances, connectors, structured cabling system 6 Medium access control. Medium access techniques for local (wired and wireless) and wide area networks 7 Data Link level. Functions, problems, protocols, case study: HDLC 8 Local Area Computer Networks. Fundamentals, architectures, evolution 9 Local Area Computer Networks. Systems, performances 10 Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers 11 Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution	
digital transmission techniques, coding, communication channels Types of computer networks. Architectures, evolution, topologies, physical parameters Physical level. Transmission media, characteristics, performances, connectors, structured cabling system Medium access control. Medium access techniques for local (wired and wireless) and wide area networks Data Link level. Functions, problems, protocols, case study: HDLC Local Area Computer Networks. Fundamentals, architectures, evolution Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution	
parameters Physical level. Transmission media, characteristics, performances, connectors, structured cabling system Medium access control. Medium access techniques for local (wired and wireless) and wide area networks Data Link level. Functions, problems, protocols, case study: HDLC Local Area Computer Networks. Fundamentals, architectures, evolution Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution	
connectors, structured cabling system Medium access control. Medium access techniques for local (wired and wireless) and wide area networks Data Link level. Functions, problems, protocols, case study: HDLC Local Area Computer Networks. Fundamentals, architectures, evolution Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution	
Medium access control. Medium access techniques for local (wired and wireless) and wide area networks Data Link level. Functions, problems, protocols, case study: HDLC Local Area Computer Networks. Fundamentals, architectures, evolution Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution	
 Local Area Computer Networks. Fundamentals, architectures, evolution Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution 	
 Local Area Computer Networks. Fundamentals, architectures, evolution Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution 	
 Local Area Computer Networks. Systems, performances Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution 	
10 Computer Networks Interconnection. Devices for network interconnection; presentation of bridges, switches and routers 11 Internet access. IP (+ ICMP), IPv6 (+IGMP) protocols. Address resolution	
Transport level protocols. TCP protocol; congestion control. TCP and UDP sockets	
General introduction to Internet applications. File transfer. Electronic mail, multimedia transmissions, network management	
14 General introduction to Internet applications. Security issues	

Bibliography

- 1. V.Dadarlat, E.Cebuc Retele Locale de Calculatoare de la cablare la interconectare, Editura Albastra (Microinformatica), Cluj, 2006, ISBN 973-650-161-2
- 2. W. Stallings, Data and Computer Communications; Prentice Hall, 2005
- 3. A. S. Tanenbaum, Retele de Calcultoare; Agora Press, 2004

8.2. <i>F</i>	Applications (Laboratory)	Teaching methods	Notes
1	Lab presentation; Elements of the structured cabling system	Practical	
2	Network connection techniques	exercises	
3	Spanning tree protocol	Brief	

4	Copper based media and cabling with UTP	presentation of					
5	Medium access methods	possible					
6	Flow control protocols	solutions					
7	Protocol Inspector	Self testing					
8	Optical Fiber and components	programmes					
9	9 Wireless access						
10	10 IP Addressing						
11	11 Network Inspector						
12	12 Network programming using sockets I						
13	Network programming using sockets II						
14	14 Lab exam						
Bibli	Bibliography						
1. N	1. Notes & lab notes available at: ftp.utcluj.ro						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Course content is kept state of the art by using latest protocols and devices available on the market

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final			
methods 3 grade									
Course Interactivity and initial preparation				Written exam (2,5 h).		70%			
Applications Quality of practical work, participation Continuous assessment, final written colloquium					30%				
10.4 Minimum standard of performance									
Grades > 5 for both theoretical and practical assessments									

Course responsible Prof.dr.eng. Vasile Dadarlat

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2 Faculty Automation and Computer Science						
1.3 Department Computer Science						
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	45.				

2. Data about the subject

2.1	Subject name					Distributed Systems						
2.2	2.2 Subject area Computer Science and Information Technology											
2.3	2.3 Course responsible/lecturer Prof. dr. eng. loan Salomie – loan.Salomie@cs.utcluj.ro						<u>.ro</u>					
2.4	.4 Teachers in charge of applications Lect. dr. eng. Tudor Cioară – Tudor.Cioara@cs.utcluj.ro											
	Lect. dr. eng. lonut Anghel – lonut.Anghel@cs.utcluj.ro											
						Lect.	dr. eng. Crist	tina.Pop – <u>Cr</u>	stina.	Pop@cs.utcluj.rd	<u>)</u>	
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OB	
										category		

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion		App	licat	tion	Individual		المارة
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	Ĺ	Р			
7	Distributed Systems	2	-	2	1	28	-	28	14	60	130	5

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	application	3
							S	
3.4	Total hours in the teaching plan	70	3.5	of which, course	28	3.6	application	42
							S	
Individual study								Hours
Manual, lecture material and notes, bibliography							18	
Sup	plementary study in the library, online	and in th	ne field	1				6
Prep	paration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	says			24
Tuto	ring							
Exams and tests							12	
Other activities							18	
2.7	Total having of individual atuals		00					•

3.7	Total hours of individual study	60
3.8	Total hours per semester	130
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer networks
4.2	Competence	Ability to analyze and design a local network using simulators available

5. Requirements (where appropriate)

	or reduirements (unions appropriate)							
5.1	For the course	Whiteboard, projector, computer						
5.2	For the applications	Computers, software specific						

6. Specific competences

- C4 Improving the performances of the hardware, software and communication systems (2 credits)
- C4.1 Identifying and describing the defining elements of the performances of the hardware, software and communication systems
- **C4.2** Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
- **C4.3** Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
- **C4.4** Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
- **C4.5** Developing professional solutions for hardware, software and communication systems based on performance optimization
- **C5** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
- **C5.1** Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field
- C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
- C5.4 Proper utilization of the quality, safety and security standards in the field of information processing
- C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
- C6 Designing intelligent systems (1 credit)
- **C6.1** Describing the components of intelligent systems
- C6.2 Using domain-specific tools for explaining and understanding the functioning of intelligent systems
- C6.3 Applying the fundamental methods and principles
- for specifying solutions for typical problems using intelligent systems
- C6.4 Choosing the criteria and evaluation methods for the quality, performances and limitations of intelligent systems
- C6.5 Developing and implementing professional projects for intelligent systems

Cross competences

N/A

7. Discipline objectives (as results from the key competences gained)

7.01	scipilite objectives (as rest	alis from the key competences gamea)
7.1	General objective	The study of concepts, techniques, algorithms, methods, methodologies and
		technologies specific to distributed systems
7.2	Specific objectives	Knowing and operating with these concepts, techniques, algorithms, methods, methodologies and technologies specific to distributed systems: communication inter-processes, middleware, issues non-functional, Socket, RPC models client-server, RMI, distributed transactions, SOA, Web Services, mobile, distributed algorithms, and data transactions on distributed

8.1. l	Lecture (syllabus)	Teaching	Notes
		methods	
1	Introduction to Distributed Systems, models and architectures of distributed systems	Using modern multimedia	
2	Quality of Service and non functional aspects of distributed systems	teaching	
3	Inter-process communication	methods and	
4	Logical time, global states, snapshots	direct access to	
5	Basics of distributed algorithms, synchronizes, leader election, object replication	internet Students are	
6	Message ordering and group communication	invited to	
7	Detection problems: termination, deadlocks, failure, global predicates	collaborate in	
8	Failure detection and handling	research	
9	Consensus and agreement	projects	
10	Distributed Transactions and Concurrency	Tutorials and	

11	Distributed Data Management	personal	
12	Internet computing - fundamentals and applications	assistance hours	
13	SOA, Web Services, Workflows	the semester and	
14	Mobile and pervasive distributed systems	before the exam	

Bibliography

- G. Coulouris, J.Dollimore, T.Kindberg Distributed Systems. Concepts and Design, Addison Wesley, 2005
- 2. A. Tanenbaum, M. van Steen Distributed Systems, Prentice Hall, 2002
- 3. A.D. Kshemkalyan M.Singhal Distributed Computing, Cambridge Press 2008
- 4. IEEE Distributed Systems Online http://dsonline.computer.org/
- 5. Ioan Salomie, Lecture Notes, http://www.coned.utcluj.ro/~salomie/DS_2011

8.2.	Applications (Laboratory, Projects)	Teaching methods	Notes
1-2	Basics of programming Web applications (2 lab sessions)	Short	
3-4	Distributed Objects (2 lab sessions)	presentation of	
5-6	Component-based distributed computing and systems (2 lab sessions)	the themes	
7-8	Message-based distributed computing and systems (2 lab sessions)	laboratory,	
9-	SOA and Web Services (2 lab sessions)	discussions on	
10		themes, themes	
11-	Business processes and workflows (2 lab sessions)	implementing	
12		computer,	
13-	Laboratory Test and Student project presentations and evaluation	personal	
14		computer	
		miniproject	

Bibliography

1. Ioan Salomie, Tudor Cioara, Ionut Anghel, Tudor Salomie – Distributed Computing and Systems – A practical Approach, Albastra Publ. House, 2008

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It's a discipline domain "Computer and Information Technology". She instructs students in developing and implementing distributed systems sofware. Course content was determined by analyzing equivalent disciplines from other universities and based on the requirements of IT employers in Romania. Course content also was assessed by Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		Ability to conceptualize, analyze, specify and design distributed systems		Written Exam		55%
Applications		Ability analysis, specification, design, implementation and testing distributed systems		Assessment during the semester		45%
10.4 Minimu	m stai	ndard of performance				

Course responsible Prof.dr.eng. Ioan Salomie

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	46.10

2. Data about the subject

2.1	Subject name				Inpu	Input/Output Systems and Peripheral Devices					
2.2	2 Subject area				Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer				Prof.	Prof. dr. eng. Zoltan Francisc Baruck – Zoltan.Baruch@cs.utcluj.ro					
2.4	Teachers in charge of applications				Prof.	Prof. dr. eng. Zoltan Francisc Baruck – Zoltan.Baruch@cs.utcluj.ro					
						Eng.	Mihai Grigore	escu – <u>mihaic</u>	rigore	scu13@gmail.c	<u>om</u>
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP
										category	

3. Estimated total time

Sem	Subject name	Lectur	Apı	olica	tion	Lectur	tur Application		tion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]			[hours / semester]							
			S	L	Р		S	L	Р			
7	Input/Output Systems and Peripheral Devices	2	•	2	-	28	•	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56	3.5	of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliography							34
Supplementary study in the library, online and in the field							12
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							18
Tutoring							5
Exams and tests						5	
Other activities						0	

3.7	Total hours of individual study	130
3.8	Total hours per semester	74
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer Programming, Computer Architecture
4.2	Competence	Competences of disciplines Computer Programming and Computer
		Architecture

5. Requirements (where appropriate)

5.1	For the course	Projector, computer
5.2	For the applications	Computers, the Microsoft Visual Studio programming environment

6. Specific competences

	C4 – Improving the performances of the hardware, software and communication systems (2 credits) C4.1 – Identifying and describing the defining elements of the performances of the hardware, software
nces	and communication systems C4.2 – Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
npete	C4.3 – Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems
nal cor	C4.4 – Choosing the criteria and evaluation methods of the performances of the hardware, software and communication systems
	C5 – Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (3 credits)
	C5.1 – Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
	C5.3 – Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
ces	N/A
Cross	
) Hoo	

7. Discipline objectives (as results from the key competences gained)

	7. Bloopinto objectives (de resulte from the Key Gempeteriose gamea)					
7.1	General objective	Knowledge of operation and performance parameters for input/output interfaces and peripheral devices; ability to communicate with controllers of peripheral devices				
7.2	Specific objectives	 Using basic methods and principles for enhancing performance of computer systems Designing input/output interfaces for connecting various devices to the computer Designing and implementing in software input/output protocols Writing system programs for controlling input/output interfaces 				

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Introduction. Programmed I/O		
2	Interrupt-Driven I/O. Direct Memory Access. I/O Processors		
3	Buses. Electrical Considerations. Synchronous and Asynchronous Buses. Bus Arbitration. VME Bus		
4	Local Buses. PCI Bus. PCI-X Bus. PCI Express Bus		
5	PCI Bus Variants for Personal Computers. PCI Bus Variants for Industrial		
	Systems		
6	Serial Buses: I ² C; SPI; USB		
7	Mid-Term Exam	- PowerPoint	
8	Liquid Crystal Displays. Liquid Crystals. TN Technology. Addressing	presentations	
	Methods. Backlighting	- Questions,	N/A
9	Liquid Crystal Displays (cont.). Characteristics. VA Technology. IPS	discussions	
	Technology	uiscussions	
10	Plasma Displays. Field Emission Displays. Organic LED Displays		
11	Graphics Adapters. Structure of a Graphics Adapter. Color		
	Representation. Video Memory. Graphics Accelerators. 3D Accelerators		
12	Graphics Processing Units. Digital Interfaces for Monitors: DVI; HDMI;		
	DisplayPort		
13	Optical Discs. Physical Medium. Data Organization and Encoding. The		
	CD-ROM Drive. Types of Compact Discs		
14	DVD Discs. Blu-Ray Discs		

Bibliography 1. Baruch, Z. F., Computer Input/Output Systems (in Romanian), Cartea Albastră, Cluj-Napoca, 2000, ISBN 973-9443-39-7. 2. Rosch, Winn L., Hardware Bible, Sixth Edition, Que Publishing, 2003, ISBN 0-7897-2859-1. Teaching methods 8.2. Applications (Laboratory) Notes The Serial Port (I) 2 The Serial Port (II) 3 The PCI Express Bus (I) 4 The PCI Express Bus (II) 5 The System Management Bus (I) - Additional The System Management Bus (II) 6 explanations The Universal Serial Bus (I) 7 - Using a N/A The Universal Serial Bus (II) programming 8 environment for 9 **Printers** the C language 10 The SCSI Interface The ATA Interface (I) 11 12 The ATA Interface (II) Compact Discs. The ATAPI Interface 13

Bibliography

Laboratory Colloquy

14

1. Lecture slides and laboratory works at http://users.utcluj.ro/~baruch/en/pages/teaching/inputoutput-systems.php

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The contents of the discipline has been corroborated with the contents of similar disciplines in the USA and Europe, as well as with chapters related to input/output systems of acknowledged manuals used in prestigious universities. The discipline has been evaluated by the ARACIS agency.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	_	Weight in the final
				methods	3	grade
Course		Understanding theoretical concepts of input/output systems and the principle of operation for peripheral devices		Written exam		70%
Applications		Ability to write communication programs with controllers of peripheral devices		Written evaluation		30%

10.4 Minimum standard of performance

Attendance of 100% at the laboratory sessions; Finishing at least one application in each laboratory session Attendance of minimum 50% at the lectures

Grade > 5 for the written exam; Grade > 5 for the laboratory written evaluation.

Course responsible Prof.dr.eng. Zoltan Francisc Baruck

6. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	46.2

7. Data about the subject

2.1	Subject name			Parallel and Distributed Computing								
2.2	Subject area			Com	Computer Science and Information Technology							
2.3	Course responsible/lecturer			Asso	Assoc. prof. dr. eng. Anca Rarău							
2.4	2.4 Teachers in charge of applications				Lect. dr. eng. Anca Hangan							
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject		DS/OP
										category		

8. Estimated total time

Sem	Subject name	Lectur	App	olicat	tion	Lectur	App	licat	tion	Individual		
-		е		S		е		S		study	TOTAL	Credit
		[hours / week.]		[hours / semester]			ster]					
			S	Г	Р		S	L	Р			
7	Parallel and Distributed Computing	2	-	2	•	28	ı	28	-	74	130	5

3.1 Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4 Total hours in the teaching plan	56		of which, course	28	3.6	applications	28
Individual study							
Manual, lecture material and notes, bibliography							
Supplementary study in the library, online and in the field							
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							14
Tutoring							
Exams and tests							40
Other activities							

3.7	Total hours of individual study	74
3.8	Total hours per semester	130
3.9	Number of credit points	5

9. Pre-requisites (where appropriate)

	o	priate)
4.	1 Curriculum	
4.) (`amaetence	

10. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	C programming language

6. Specific competences

	ces	C4 Improving the performances of the hardware, software and communication systems (2 credits) C4.1 Identifying and describing the defining elements of the performances of the hardware, software and
	mpeten	communication systems C4.5 Developing professional solutions for hardware, software and communication systems based on performance optimization
		C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (3 credits)
	Profess	C5.2 Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field C5.5 Creating a project including the problem's identification and analysis, its design and development,
ļ		also proving an understanding of the basic quality requirements N/A
	Cross	

7. Discipline objectives (as results from the key competences gained)

	icolphilio objectives (as recall	s nom the key competences gamed
7.1	General objective	1. Students become aware of differences and similarities between parallel and distributed computing so the students understand the boundaries of both domains.
		2. Students become familiar with the principles of designing parallel programs.
		3. Students become familiar with the main classes of distributed algorithms.
7.2	Specific objectives	Parallel algorithms performance and scalability. Parallel algorithms design. Distributed algorithms: time synchronization, distributed mutual exclusion, causal ordering, leader election and snapshots.

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Introduction: goal, administrative issues, definition of parallel system and	Interactive	
	distributed systems.	lectures using	
2	Performance and scalability: metrics, scalability definition, Amdahl's law.	PPT	
3	Parallel algorithm design: parallelization process, data dependency.	presentations,	
4	Parallel algorithm design: case study: ocean simulation.	exercises (at	
5	Parallel algorithm design: decomposition techniques, mapping techniques	whiteboard) and	
	for load balancing.	questions	
6	Interconnection networks: static interconnection networks (metrics,	addressed to the	
	topologies), dynamic interconnection networks (buses, crossbars,	students.	
	multistage networks).		
7	Dense matrix algorithms: matrix-vector multiplication (1D partitioning and		
	2D partitioning, comparison 1D to 2D), matrix-matrix multiplication (2D		
	partitioning, Cannon algorithm).		
8	Time: physical clocks synchronization (Cristian algorithm, Berkeley		
	algorithm, Network Time Protocol), logical clocks (Scalar time, Vector		
	time, efficient implementation of vector clocks - Singhal-Kshemkalyani).		
9	Distributed mutual exclusion: problem definition, Token-ring, Suzuki-		
	Kasami, central coordinator, Lamport, Ricart-Agrawala.		
10	Causal ordering: problem definition, Birman-Schiper-Stephenson,		
	Schiper-Eggli-Sandoz.		
11	Leader election: problem definition, general networks (FloodMax,		
	OptFloodMax), synchronous / asynchronous ring (LeLann, Chang-		
	Roberts, Hirschberg-Sinclair).		

12	Leader election: synchronous / asynchronous ring (Franklin, Peterson),	
	anonymous ring (Itai-Rodeh).	
13	Snapshot: problem definition, Chandy-Lamport, Spezialetti-Kearns, Lai-	
	Yang.	
14	Data analysis with Hadoop	
	Discussion on parallel vs. distributed vs. concurrent.	

Bibliography

- 1. Introduction to Parallel Computing, A. Grama, A. Gupta, G. Karpypis, V. Kumar, 2003
- 2. Distributed Computing: Principles, Algorithms, and Systems, A. D. Kshemkalayani, M. Singhal, Cambridge University Press, 2008

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Introduction in PVM	Problem based	
2	Message-passing functions and the task control functions (I)	approach.	
3	Message-passing functions and the task control functions (II)		
4	Control functions of the virtual machine and advanced functions (I)		
5	Control functions of the virtual machine and advanced functions (II)		
6	Process groups functions (I)		
7	Process groups functions (II)		
8	Implementing Cannon's algorithm using the PVM library		
9	Introduction to grid computing		
10	Job execution in Condor (I)		
11	Job execution in Condor (II)		
12	Workflows in Condor		
13	Laboratory test		
14	Laboratory test		

Bibliography

- 1. Introduction to Parallel Computing, A. Grama, A. Gupta, G. Karpypis, V. Kumar, 2003
- 2. Distributed Computing: Principles, Algorithms, and Systems, A. D. Kshemkalayani, M. Singhal, Cambridge University Press, 2008
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

As Cluj software workforce market gets more sophisticated, having solid knowledge of how to develop parallel programs and mastering the distributed computing are qualities that software companies look for.

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10. 3	Weight in the final grade
Course		Formal assessment to test theoretical knowledge and problem solving skills. Attendance and activity.		Written exam.		70%
Applications		Formal assessment to test practical skills for designing parallel solutions and implementation parallel solutions. Attendance and activity.		Colloquium and problems during term.		30%

10.4 Minimum standard of performance

Design and implementation of parallel solutions using the theoretical models and tools (PVM and Condor). Pre-requisite for written exam: 6 mandatory lecture attendances.

Course responsible Assoc. prof.dr.eng. Anca Rarau

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca				
1.2	Faculty	Automation and Computer Science				
1.3	Department	Computer Science				
1.4	Field of study	Computer Science and Information Technology				
1.5	Cycle of study	Bachelor of Science				
1.6	Program of study/Qualification	Computer Science/ Engineer				
1.7	Form of education	Full time				
1.8	Subject code	47.1				

2. Data about the subject

2.1	Subject name				Oper	Operating Systems Design						
2.2	Subject area	а				Com	Computer Science and Information Technology					
2.3	Course resp	onsib	le/lec	turer		Lect.	dr. eng. Adria	n Coleşa – <mark>a</mark>	adrian.	colesa@cs.utcl	luj.ro	
2.4	2.4 Teachers in charge of applications				Eng. Eng.	Andrei Luţaş -	- andrei.luta maşan – gh	s@bito ita.haj	masan@bitdefe	-		
2.5	Year of study	IV	2. 6	Semest er	7	2.7	Assessmen t	exam	2.8	Subject category	DS/OP	

3. Estimated total time

Sem	Subject name	Lecture Applications		Lecture Applications Individual study			TOTAL	Credit				
		[hours / week.]		[hours / semester]								
			S	L	Р		S	L	Р			
7	Operating Systems Design	2	•	2	1	28	-	28	14	85	155	6

3.1	Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4	Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Indiv	idual study							Hours
Man	ual, lecture material and notes, bibliog	graphy						40
Supp	olementary study in the library, online	and in th	e field	l				0
Prep	aration for seminars/laboratory works	, homew	ork, re	eports, portfolios, es	ssays	;		42
Tutoring								1
Exams and tests							2	
Othe	er activities							0

3.7	Total hours of individual study	85
3.8	Total hours per semester	155
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer Programming, Operating Systems
4.2	Competence	C Programming, OS concepts understanding, OS system call usage

5. Requirements (where appropriate)

5.1	For the course	Students must have minimum 9 classes attended to be allowed to take the exam
5.2	For the applications	Students must have minimum 11 classes attended to be allowed to take the exam

6. Specific competences

C5: Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems

C5.1: Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator

C5.2: Using interdisciplinary knowledge for adapting the computing system to the specific requirements of the application field

C5.3: Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems

C5.4: Proper utilization of the quality, safety and security standards in the field of information processing

C5.5: Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Have a clear understanding of the OS' and its components' detailed					
		functionality, structure and dsign methods.					
7.2	2 Specific objectives Understand the OS structure, its components' functionality						
		inter-relationships.					
		Knowledge about different design and implementation alternatives					
		(advantages and disadvantages) of different OS components.					
		Capability to design different OS components, like: thread scheduler,					
		synchronization mechanisms, processes and threads, virtual					
		memory, file system.					

8.1. L	Lecture (syllabus)	Teaching methods	Notes
1	General structure of an OS . Possible OS structures (monolithic, layered, micro-kernel, virtual machine, exokernel), its components, their functionality, role, interconnectivity.	(1) lecture presentation based on	
2	Process and thread management (1) . Scheduling algorithms. FCFS, SJF, RR, Priority-based, Lottery. Priority inversion.	beamer presentation;	
3	Process and thread management (2) . Use cases. Solaris, Windows and Linux process management and scheduling.	(2) interactions with students:	
4	Synchronization mechanisms (1) . General Design Principles. Hardware mechanisms used for implementation of higher-level synchronization mechanisms. Design and implementation of locks, semaphores, condition variables. Deadlock avoidance.	ask their opinion relative to the presented subject;	
5	Synchronization mechanisms (2) . Linux and Windows Use Cases. The synchronization mechanisms provided by Linux and Windows. The way they are implemented.	(3) give each class a short evaluation test;	
6	Synchronization mechanisms (3) . Deadlock. Deadlock avoidance, prevention and detection algorithms.	let students discuss and	
7	Process management . Design and implementation aspects related to system calls. Techniques and strategies for design and implementation of processes and threads support.	argue each other their solution; give	
8	Open files management . Design aspects. Illustration on the Linux Virtual Fule System (VFS).	them the good solution and let	
9	Memory management (1) . General Design Principles. Design and implementation alternatives of different memory management techniques and mechanisms paging, segmentation, and swapping.	them evaluate their own one; (4) propose 2-3	
10	Memory management (2). Virtual memory's design and implementation aspects. Page replacement algorithms.	interesting study cases of OSes to be prepared and	
11	Memory management (3). Use cases. Linux and Windows memory	Do propared and	

	management solutions.	presented by
12	File systems (1). General Design Aspects. Design and implementation	students;
	alternatives of file systems concepts (files, directories), storage space	
	management. Advantages and disadvantages.	invited to
13	File systems (2). Linux and Windows File Systems. Design and	collaborate in
	implementation of Ext2 and NTFS.	research
14	Security aspect. Subject review. Basic security aspects design.	projects.
	Overview of all presented subjects.	

Bibliography

- 1. A. Silberschatz, G. Gagne, P. B. Galvin, *Operating Systems Concepts*, 7th edition, Wiley, 2005, ISBN 978-0-471-69466-3
- 2. A. Tanenbaum, A. Woodhull. *Operating Systems Design and Implementation*. 3rd edition, Prentice Hall, 2006, ISBN: 0131429388
- 3. Daniel Pierre Bovet, Understanding Linux Kernel, O'Reilly & Associates, 2001, ISBN 0-596-00002-2.

8.2.	Applications (Laboratory, Projects)	Teaching methods	Notes
1	Introduction of the Pintos OS	(1) students are	
2	GNU Make. Apply it on the Makefile files in Pintos	presented a very	
3	OS debugging techniques applied in Pintos	brief overview of	
4	Pintos' thread system	the most	
5	Thread scheduling in Pintos	important and	
6	Pintos' synchronization mechanisms	difficult aspects	
7	System call mechanism in Pintos. Simple system call implementation	of the working	
8	Process management in Pintos	subject;	
9	Multi-threading support implementation in Pintos	(2) students are	
10	Virtual memory in Pintos. Practice with basic data structure and mechanism	given at the beginning of	
11	Virtual memory in Pintos. Swapping, page replacement algorithms,	each class a	
40	memory-mapped files	quiz;	
12	Pintos' file system. Practice with the basic data structure. Implement extendable files.	(3) students are	
13	Pintos' file system. Implement subdirectory support.	given a hands- on tutorial to	
14	Lab knowledge evaluation.	practice with	
	_	working	
		subject's	
		aspects and to	
		solve problems	
		(4) students are	
		given	
		challenging	
		problems for	
		extra credit;	

Dibilography

1. Lecture slides and laboratory text and support at http://os.obs.utcluj.ro/moodle

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

OSD course presents techniques for hardware and software resources management, which are applicable on any complex management software application. Besides, it provides students detailed knowledge about modern OSes' internals, making them capable of developing more efficient applications. The course curriculum maps the IT companies expectations, especially those dealing with direct access to OS services or developing kernel drivers or modules. Such companies are, for instance, system and data security and antivirus detection companies.

10. Evaluation

	•					
Activity type	10.1	Assessment criteria	10.2	Assessment	10.3	Weight in the final
				methods		grade
Course		Knowledge about design		Oral examination.		0.5
		alternatives of different OS		Detailed		

	components. Capability to apply theoretical knowledge on real situations.	discussion about design alternatives of different OS components. Solving real OS design problems.	
Applications	Knowledge about main data structures and mechanisms in Pintos OS. Capability to design and implement improvement solutions for different Pintos components.	Lab: implementation of different problems in Pintos. Project: argumentation of design and implementation solutions	0.2

10.4 Minimum standard of performance

Knowledge of the design principles of the basic OS components, like process manager, memory manager, file system. Be able to implement a simple system call in Pintos related to the mentioned components.

Course responsible Lect.dr.eng. Adrian Colesa

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	47.2

2. Data about the subject

2.1	Subject name				User	User Interface Design						
2.2	Subject area			Com	Computer Science and Information Technology							
2.3	Course responsible/lecturer					Prof.	Prof. dr. eng. Gorgan Dorian – dorian.gorgan@cs.utcluj.ro					
2.4	Teachers in charge of applications			Lect	Lect. dr. eng. Ştefănuţ Teodor, teodor.stefanut@cs.utcluj.ro,							
	Dr. eng. Mihon Dănuţ, vasile.mihon@cs.utcluj.ro											
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP	
										category		

3. Estimated total time

Sem	Subject name	Lectur	Apı	plicat	tion	Lectur	App	olicat	ion	Individual		
-		е		S		е		S		study	TOTAL	Credit
		[hours / week.]		[hours / semester]		ster]						
			S	L	Р		S	L	Р			
7	User Interface Design	2		2	1	28	_	2	1	85	155	6

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study							
Manual, lecture material and notes, bibliog	graphy						40
Supplementary study in the library, online and in the field							10
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						20	
Tutoring						6	
Exams and tests							9
Other activities							0

3.7	Total hours of individual study	85
3.8	Total hours per semester	155
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	Computer programming (C or Java), Elements of Computer Assisted Graphics, Software Engineering
4.2	Competence	The fundamental methodology for the development of software applications

5. Requirements (where appropriate)

5.1	For the course	Projector, computer	
5.2	For the applications	Laboratory attendance is mandatory	
		Study of laboratory materials from the server	

6. Specific competences

- C5 Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (6 credite) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator
- C5.2 Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of
- the application field

 C5.3 Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems
 - C5.4 Proper utilization of the quality, safety and security standards in the field of information processing
 - C5.5 Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements

competences

N/A

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Study and experiment the methodology of interactive software applications development. Study Human-Computer interaction techniques.
7.2	Specific objectives	 Apply the user centred software development methodology Study and experiment the techniques that are specific to the flexible methodology of the development of interactive applications and graphical user interfaces Implementation of new and efficient human-computer interaction techniques Usability evaluation in interactive applications

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes			
1	Introduction. History	New multimedia teaching				
2	User interface development concepts					
3	Input and output communication concepts	approaches will be	Decision on the c			
4	User oriented design methodology	used in classes.	During the			
5	User interface design methodology	The course is	semester			
6	User interface usability	interactive and	and before each exam there are a			
7	User requirements definition	includes				
8	Task description and analysis	demonstrations that	few			
9	User interface prototyping	exemplify different	preparation			
10	Cognitive walkthrough and heuritic evaluation	user interaction	hours			
11	Interaction styles and techniques	techniques and the	planned.			
12	Web technologies. Audio and video technologies	software	piai ii iodi			
13	Wireless technologies	development				
14	User interface development environments	methodology.				

Bibliography

- 1. Shneiderman B.: "Designing the User Interface. Strategies for Effective Human Computer Interaction", Addison-Wesley, 1992.
- Galitz W.O.: "The Essential Guide to User Interface Design". John Wiley & Sons, 1997.

In virtual library

Resurse curs, http://cgis.utcluj.ro/didactic

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Introduction. Administrative	Documentation and	
2	Static and dynamic HTML pages	examples will be	
3	JavaScript Language and DHTML	available to the	
4	Dynamic HTML pages, JavaScript and AJAX Technology	students, prior to	
5	Graphical user interface development methodologies. jQuery	the laboratory	
	Technology	classes, on a	
6	Simple animation. Adobe Flash Technology	dedicated server.	

7	Animation description. Action Script 3 Technology	The students will	
8	User interface prototyping. Adobe FLEX Technology	work independently	
9	Complex prototyping – Part 1. FLEX and Action Script 3 Technology	but will also be	
10	Complex prototyping – Part 2. Communication techniques	assisted by the	
	prototyping components	teacher.	
11	Java based prototyping techniques. JavaFX Technology		
12	Complex user interface development. XAML Technology		
13	Dynamical user interfaces. Silverlight Technology		
14	Assessment		
Appl	ications (Projects)	Teaching methods	Notes
1	Project proposal: subject, methodology, phases, organization,		
	project contents, project evaluation;		Each
2	Project definition. Evaluation report;		student will
3	Task description and analysis;		have to
4	Low fidelity prototyping, and scenarios;		develop a
5	Cognitive walkthrough;	Documentation and	specific
6	Heuristic evaluation;	examples will be	project
7	Prototyping plan;	available to the	based on
8	Prototype codification;	students on a	the
9	User test cases;	dedicated server.	knowledge
10	Prototype evaluation and evaluation reports;		acquired at
11	Iterative enhancement of the prototype;		the
12	Final user interface development;		laboratory
13	Document writing;		hours.
14	Project presentation and evaluation.		

Bibliography

1. Gorgan D., Harsan H.: "User Interface Design: Laboratory works". Casa Cărții de Ştiință, 2000.

In virtual library

1. Curs și lucrări practice, http://cgis.utcluj.ro

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

This discipline is integrated into the Computers and Information Technology domain. The content is classic, yet modern, and introduces to students the user centred methodology for the development of interactive software applications and graphical interfaces. The content of this discipline has been aligned with the information presented in similar disciplines from other major universities and companies from Romania, Europe and USA and has been evaluated by the authorized Romanian governmental agencies (CNEAA and ARACIS).

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		The written exam tests the understanding of the information presented in classes and the ability to apply this knowledge. The activity in class evaluates the active involvement of the students in the teaching process and their participation to the discussions, debates and other class activities during the entire semester.		Evaluation is performed through written exam (E) and classes activity (AC)		50% (E) 10% (AC)
Applications		Laboratory assessment evaluates the practical abilities obtained by the students. Through project assignments the students have the opportunity to develop their skill in applying the notions, concepts and methods presented in class.		Evaluation is performed through written exam and project assessment.		25% (C) 25% (P)
		dard of performance				
Grades > 5 f	or both	theoretical and practical assessments				

Course responsible Prof.dr.eng. Dorian Gorgan

11. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	48.1

12. Data about the subject

2.1	.1 Subject name					Pattern Recognition Systems						
2.2	2.2 Subject area					Com	Computer Science and Information Technology					
2.3	2.3 Course responsible/lecturer Pr					Prof.	Prof. dr. eng. Sergiu Nedevschi – Sergiu Nedevschi@cs.utcluj.ro					
2.4	.4 Teachers in charge of applications Con					Conf	Conf. dr. eng. Tiberiu Marita, Conf.dr.eng. Radu Danescu,					
	Conf.dr.eng. Florin Oniga {Tiberiu.Marita,											
						Radu	u.Danescu,Flo	orin.Oniga}@o	cs.utc	luj.ro		
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP	
										category		

13. Estimated total time

0	0.11	1	Λ.	. 12		1	Λ	P	•	1 . 12 . 2 . 1		
Sem	Subject name	Lectur	Ap	piicai	tion	Lectur	App	nicai	tion	Individual		
		е		S		е		S		studv	TOTAL	Credit
1				•				•		July		J. 5410
		[hours / week.]		[hours / semester]			ster]					
			S	L	Р		S	L	Р			
7	Pattern Recognition Systems	2		2	1	28	_	28	11	85	155	6

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3	
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42	
Individual study	ndividual study							
Manual, lecture material and notes, bibliography								
Supplementary study in the library, online and in the field								
Preparation for seminars/laboratory works, homework, reports, portfolios, essays								
Tutoring							4	
Exams and tests							5	
Other activities								
3.7 Total hours of individual study		85						

3.7	Total hours of individual study	85
3.8	Total hours per semester	155
3.9	Number of credit points	6

14. Pre-requisites (where appropriate)

4.1	Curriculum	Image Processing
4.2	Competence	Computer programming, Data structures and algorithms, Probability
		Theory, Artificial Intelligence.

15. Requirements (where appropriate)

5.1	For the course	Blackboard, video projector, computer					
5.2	For the applications	Workstations, specific software (Visual Studio, Diblook, OpenCV,					
		Matlab)					

6. Specific competences

C4 - Improving the performances of the hardware, software and communication systems (2 credits) C4.2 – Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems C4.3 – Applying the main methods and principles for increasing the performances of the hardware, software and communication C5 - Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and the computing system's interaction with the environment and the human operator C5.2 - Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field C5.3 - Using fundamental principles and methods for ensuring the security, the safety and ease of exploitation of the computing systems C5.5 - Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements C6 - Designing intelligent systems (2 credits) C6.2 - Using domain-specific tools for explaining and understanding the intelligent systems' functioning C6.4 - Choosing the criteria and evaluation methods for the intelligent systems' quality, performances and limitations

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Knowledge, understanding and use of concepts related to pattern recognition.
7.2	Specific objectives	Knowledge, understanding and use of model-based pattern reconition methods using statistical approaches, linear discriminant methods, support
		vectors, and ensemble of classifiers. Knowledge, understanding and use of the specific operations of a pattern recognition system: data preprocessing, dimensional reduction, relevant feature selection, building the prediction model, selection of the optimum
		model, performance analysis.

8. Contents

N/A

competences

Professional competences

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Model-based recognition 1: Mathematical model of the 2D and 3D		
	recognition from intensity and depth images.		
2	Model based recognition 2: Model based recognition problems.	latana ationa	
	Computational strategies.	Interactive	
3	Statistical recognition 1: Review of basic statistics and probabilities	teaching, using	
	notions. Decision theory.	oral	
4	Statistical recognition 2: Liniar and quadratic classifiers.	presentations	
5	Statistical recognition 3: Bayes classifiers.	supported by multimedia tools,	
6	Statistical recognition 4: Density estimation.	consultations,	
7	Recognition using image models.	involving	N/A
8	Structural recognition 1: Features extraction and selection. Constraints.	students in	
9	Structural recognition 2: Model and scene representation. Exact matching.	research and	
	Search space.	development	
10	Structural recognition 3: Exhaustive matching methods.	activities.	
11	Structural recognition 4: Search space reduction methods: three search	a di i i i i i i i i i i i i i i i i i i	
12	Structural recognition 5: Search space reduction methods: hypothesis generation and checking.		
13	Intermediate representation. Inexact matching.		

14 Model-based recognition 1: Mathematical model of the 2D and 3D recognition from intensity and depth images.

Bibliography

- 1. S. Nedevschi, "Prelucrarea imaginilor si recunoasterea formelor", Ed. Microinformatica, 1997.
- 2. Richard O. Duda, Peter E. Hart , David G . Stork, "Pattern Clasification", John Wiley and Sons, 2001.
- 3. S. Theodoridis, K. Koutroumbas, "Pattern Recognition", 2-nd Edition, Academic Press, 2003.
- 4. W.E. Grimson, "Object Recognition by Computer: The Role of Geometric Constraints", MIT Press, 1990.

8.2.	Applications (Laboratory)	Teaching methods	Notes
1	Geometric transforms.		
2	Detection of geometric features of the objects.		
3	Geometric invariant shape features. Moments.		
4	Edge detection using the zero crossing of the oriented second order derivative. Contour following and closing.	Presentation	
5	Objects shape characterization using contour descriptors. The use of radial distance.	using the blackboard and	
6	Color image features. Color features obtained from the local histograms analysis	multimedia tools.	
7	Minimal distance classifier.]	
8	Nearest neighbor classifier. Bayes clasifier.	Experiments	
9	Unsupervised recognition algorithms: threshold, min-max distance, K-	and	
	means.	implementation	N/A
10	Matching the model with the scene using rigid patterns.	using specific software tools	IN/A
11	Matching the model with the scene using parametric patterns.	(MS Visual	
12	Matching using symbolic structures 1: features selection.	Studio, Diblook)	
13	Matching using symbolic structures 2: indexing model features	Studio, Diblook)	
14	Matching using symbolic structures 3: performing correspondences.	Evaluation of the	
Appl	ications - Projects	design and	
1	Topic assignment (week 1, 2)	implementation	
2	Analyzes, specification and design (week 3,4)	phases.	
3	Presentation of the approach (week 5,6)		
4	Implementation (week 6,7,8,9,10); Intermediate presentation (week 9,10)		
5	Evaluation and optimization (week 11,12)		
6	Report elaboration (week 12,13)		
7	Final Presentation (week 13,14)		

Bibliography

S. Nedevschi, "Lecture Notes", ftp://ftp.utcluj.ro/pub/users/nedevschi/SRF/

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The subject is part of the Computer Science and Information Technology curriculum, its contents combining fundamental and practical aspects used in the field of pattern recognition. The subject content is correlated with the specific curricula of other Universities, in Romania and abroad, and is evaluated by government agencies (CNEAA and ARACIS). The subject's activities are meant to make the students familiar with the applications and the research directions of the image processing field, helped by the internationally renowned experience of the teachers.

10. Evaluation

Activity type	10.1	Assessment criteria	Assessment methods	Weight in the final grade
Course		Testing the theoretical knowledge acquired, and the practical abilities of problem solving.	Written exam	50 %
Applications		Testing the practical abilities of designing and implementing solutions to specific problems. Attendance and activity.	Lab exam, project assessment	50 %

10.4 Minimum standard of performance

Modeling and implementation of solutions to specific engineering problems, using the domain's formal apparatus.

Course responsible Prof.dr.eng. Sergiu Nedevschi

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	48.2

2. Data about the subject

2.1	Subject name			Tran	Translators Design						
2.2	2.2 Subject area			Com	Computer Science and Information Technology						
2.3	2.3 Course responsible/lecturer			Asso	Assoc.prof. dr. eng. Emil Şt. Chifu – emil.chifu@cs.utcluj.ro						
2.4	2.4 Teachers in charge of applications										
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	exam	2.8	Subject	DS/OP
										category	

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion	Lectur	App	olicat	tion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]		.]	[h	ours	s / se	mes	ster]			
			S	L	Р		S	L	Р			
7	Translators Design	2	-	2	1	28	-	28	14	85	155	6

3.1 Number of hours per week	5	3.2	of which, course	2	3.3	applications	3
3.4 Total hours in the teaching plan	70	3.5	of which, course	28	3.6	applications	42
Individual study						Hours	
Manual, lecture material and notes, bibliography							30
Supplementary study in the library, online and in the field							15
Preparation for seminars/laboratory works, homework, reports, portfolios, essays							27
Tutoring						10	
Exams and tests						3	
Other activities						0	

3.7	Total hours of individual study	85
3.8	Total hours per semester	155
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	Formal Languages and Translators, Computer Programming, Data
		Structures and Algorithms
4.2	Competence	- Basic knowledge of programming and data structures (preferably in the
		C and Java languages)
		- Concepts of generative grammars and formal languages
		- To know the basic principles in the design of interpretors and
		translators for languages artificial

5. Requirements (where appropriate)

5.1	For the course	Blackboard, overhead projector, computer
5.2	For the applications	Computers, specific software

6. Specific competences

C4 – Improving the performances of the hardware, software and communication systems (2 credits)
C4.2 – Explaining the interaction of the factors that determine the performances of the hardware, software and communication systems
C4.3 – Applying the fundamental methods and principles for increasing the performances of the

C4.3 – Applying the fundamental methods and principles for increasing the performances of the hardware, software and communication systems

- **C4.5 –** Developing professional solutions for hardware, software and communication systems based on performance optimization
- **C5** Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits)
- **C5.2** Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field
- **C5.5** Creating a project including the problem's identification and analysis, its design and development, also proving an understanding of the basic quality requirements
- C6 Designing intelligent systems (2 credits)
- C6.2 Using domain-specific tools for explaining and understanding the functioning of intelligent systems
- **C6.3** Applying the fundamental methods and principles for specifying solutions for typical problems using intelligent systems
- C6.5 Developing and implementing professional projects for intelligent systems

Cross competences

N/A

Professional competences

7. Discipline objectives (as results from the key competences gained)

1. D	iscipiine objectives (as results from	the key competences gamed)
7.1	General objective	 To know the phases of the programming language translators: lexical analysis, syntactic analysis, code generation, and code optimization. To master the tree structure representation of Web documents.
7.2	Specific objectives	To know the classes of languages for which efficient translators and interpreters can be implemented.
		To know the rules for processing typical statements for code generation.
		To understand the difference between structure and presentation of documents.
		By using the Java language, to implement parsers of type SAX and DOM for XML documents containing DTD validation information.
		By using the Java language, to implement XML document transformators, based on XSLT transformations.
		To design, develop and test a project, by utilizing parser generators, to arrive at a translator.

8.1. L	ecture (syllabus)	Teaching	Notes
		methods	
1	Lexical analyzer design: Implementation of lexical analyzers based on	- The main ideas	N/A
	type 3 grammars.	with multimedia	
2	Lexical analyzer design: Implementation of lexical analyzers based on	tehniques	
	type 3 grammars.	- Details and	
3	Lexical analyzer design: Implementation of lexical analyzers based on	examples at the	
	type 3 grammars.	blackboard, in	
4	Syntactic analyzer design: Implementation of top-down and bottom-up	interaction with	
	syntactic analyzers.	the students	

5	Syntactic analyzer design: Implementation of top-down and bottom-up	- There are					
5	syntactic analyzers.	consultation					
6	Syntactic analyzer design: Implementation of top-down and bottom-up syntactic analyzers. - Students are						
7	Translator grammars: Translator grammars for the implementation of top-down and bottom-up parsers.						
8	Translator grammars: Translator grammars for the implementation of top-down and bottom-up parsers.						
9	Code generators: Generation of declarations and statements.						
10	Code generators: Generation of declarations and statements.						
11	Code generators: Generation of declarations and statements.						
12	Code generators: Generation of declarations and statements.						
13	Optimizations of the object code: Object code optimization based on syntax trees and based on determining the subexpressions of an expression.						
14	Optimizations of the object code: Object code optimization based on						
	syntax trees and based on determining the subexpressions of an						
	expression.						
	graphy						
	.M. Lewis, D.J. Rosenkrantz, R.E. Stearns, Compiler Design Theory, Addiso						
	A. Leţia, E.Şt. Chifu, Limbaje formale şi translatoare, Ed. Casa cărţii de ştiinţ						
	. Negrescu, Limbaje de programare şi procesoare de limbaje, Ed. Casa cărţi	ı de ştiinţa, 2000.					
	.A. Phillips, XML, Ed. Teora, 2001.	Tanahina mathada	Notos				
8.2. <i>F</i>	Applications (Laboratory, Projects) Definition of individual assignment (case study): Each student has	Teaching methods	Notes				
	assigned a software tool (product) used in the design and implementation						
	of translators. These tools are available at URL						
	http://www.combo.org/lex_yacc_page/#tools						
L2	Installing and running the software tool.						
L3	Installing and running the software tool.	-					
L4	Studying the software tool. The students experiment the use of the product based on the authors' examples.						
L5	Studying the software tool.	Brief					
L6	Studying the software tool.	presentation at					
L7	Definition of the student own example, based on the existing examples or	the blackboard,					
	on a specific problem taken from reality.	implementing					
L8	Presentation no. 1 (evaluation): Description of the product and the trace of	and testing					
	an example.	individual					
L9	Definition of student own example design (regular expressions, grammar	project on the					
	of the language to analyze etc.).	computer					
L10	Implementation of the assignment (own example): Developing and testing						
	a software project, by using the assigned tool. The assignment materializes as a translator for an artificial language.						
L11	Implementation of the assignment.						
L12	Implementation of the assignment.						
L13	Implementation of the assignment.						
L14	Presentation no. 2 (evaluation): Presentation of the student own example.						
P1	Definition of the XML language.						
P2	Parser of type SAX in Java. Parser of type DOM in Java.	Brief					
P3	XML documents with DTD validation information. SAX parser for	presentation at					
D.	validating XML documents using DTD information.	the blackboard,					
P4	DOM parser for validating XML documents using DTD information.	implementing					
D.F.	Transformators implemented in Java.	and testing					
P5	XSLT transformations. HTML documents.	homeworks on					
P6	XSLT transformations. HTML documents.	the computer					
P7	Transformation of XML documents into HTML documents. Final assessment of the individual project.						
Biblio	graphy						
1	. I.A. Leţia, D. Marcu, B. Ungureanu, Procesoare de limbaje. Îndrumăto	r de laborator, Univ	ersitatea				

Tehnică din Cluj-Napoca, 1995.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

It is a specialty course in Computer Science, its syllabus being both classical and modern. It teaches the students with the principles of efficient design and implementation of interpreters and translators for artificial languages. The syllabus of the course has been discussed with other important universities and companies from Romania, Europe, and USA. This syllabus has been evaluated by Romanian governmental agencies (CNEAA and ARAIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment	10.	Weight in the final
		methods	3	grade
Course	Problem-solving skillsAttendance, Activity	- Written exa	m	40%
Applications	Problem-solving skillsAttendance, Activity	- Assesemer the individua		40%
		proejct - Written exa	m	20%

10.4 Minimum standard of performance

Modeling a typical engineering problems using the domain specific formal apparatus Obtaining final grade 5

Course responsible Assoc. prof.dr.eng. Emil Chifu

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	49.1

2. Data about the subject

2.1	Subject name				Marketing						
2.2	.2 Subject area			Com	Computer Science and Information Technology						
2.3	Course responsible/lecturer			S.I. \	S.I. Veronica Maier						
2.4	2.4 Teachers in charge of applications										
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	Colloquium	2.8	Subject	DC/OP
										category	

3. Estimated total time

Sem	Subject name	Lectur	Ар	plica	tion	Lectur	App	licat	ion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hour	s/v	veek	.]	[h	ours	/ se	mes	ster]		
			S	L	Р		S	Г	Р			
7	Marketing	2	-	-	-	28			-	48	76	3

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-
Individual study							Hours
Manual, lecture material and notes, bibliography						14	
Supplementary study in the library, online and in the field						7	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					14		
Tutoring					9		
Exams and tests					4		
Other activities					-		

3.7	Total hours of individual study	48
3.8	Total hours per semester	76
3.9	Number of credit points	3

4. Pre-requisites (where appropriate)

4.1	Curriculum	Management and communication
4.2	Competence	Being acquainted with the basics of managing an organizational
		department/group

5. Requirements (where appropriate)

5.1	For the course	Presence of multimedia technology			
5.2	For the applications	Not the case			

6. Specific competences

nal	C5 – Designing, managing the lifetime cycle, integrating and ensuring the integrity of hardware, software and communication systems (2 credits) C5.2 – Using interdisciplinary knowledge for adapting the computing system to the specifc requirements of the application field C5.3 - Using fundamental principles and methods for ensuring the security, the safety and ease of
Profe	exploitation of the computing systems
Cross	CT1 - Honorable, responsible, ethical behavior, in the spirit of the law, in order to ensure the professional reputation (1 credit)

7. Discipline objectives (as results from the key competences gained)

7. Discipline objectives (as results from the key competences gained)					
7.1	General objective	To understand the basics of marketing process: identifying and satisfying in a profitable and social responsible way the market needs through: offering the most appropriate product, at the right price, using the most effective and efficient distribution channel, with the most effective and efficient communication mix.			
7.2	Specific objectives	 To understand the role and ways of creating value for customers as mean of the organization's wellbeing To understand the basic concepts of socially responsible marketing and marketing research in contemporary global business To understand the basics of designing marketing strategies and plans in the more and more complex and dynamic general and task environment and based on consumer behavior analysis and buying decisional factors To understand and use of effective marketing mix: Product, Price, Place (Distribution) and Promoion (Communication) for each identified and assessed market segment 			

8.1. L	ecture (syllabus)	Teaching	Notes	
1	Marketing role in big and small companies and in society: to contribute to company prosperity through creating a high value for the customers; to	methods		
	make the company responsible on the long range in front of community, society and environment. Marketing specific activities		2	
2	Marketing concepts (philosophies) in contemporary organizations: Volume? Quality? Sales? Customer satisfaction?		2	
3	Marketing environment analysis. Micro and macro environment: suppliers, interest groups, customers, economic, demographic, technological, natural, legal and cultural environment	Interactive	2	
4	Marketing research: research plan, data collection; data analysis quantitative and qualitative techniques; experiments; research report. Marketing information systems	lecturing, ppt./prezi support/short	2	
5	Marketing strategic planning: creating and maintaining the balance movies related between objectives, resources and market opportunities. Methods of strategic analysis.			
6	Designing the strategic plan at four levels: company, divisions, strategic units and brands	exercises-	2	
7	Consumer behavior analysis: patterns of behavior		2	
8	Buying decision process		2	
9	Market segmentation. Criteria and methods of market segmentation		2	
10	Product policy. Product life cycle. Researching and developing new products			

11	Product strategies for the life cycle stages. Positioning strategies 2				
12	Pricing. Pricing policy objectives. Pricing and legal constraints. Pricing				
	policies: market penetration and market skimming 2				
13	Product distribution. Choosing the distribution channels. Managing and				
	controlling the distribution channels		2		
14	Marketing communication. Communication process. Marketing				
	communication mix: advertising, publicity, sales promotion, sales force,				
	direct marketing, public relations				
Biblio	graphy				
1	. D. Catana, Marketing (2014), lecture support, available (with password) a	t www.marketing.uto	cluj.ro		
2	2. D. Catana, Gh. A. Catana (2009), Fundamentals of Marketing, UTPRES				
8.2. /	8.2. Applications (Seminars, Laboratory, Projects) Teaching methods Notes				
1	1 Not the case				
Biblio	Bibliography				

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The syllabus is set up based upon the feedback got from employers of UTCN alumni, as well as on trends in the business and general environment

10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment	10.	Weight in the final
				methods	3	grade
Course		Exam score (E); Class involvement (I)		- on-line examination (closed and open ended questions) - presenting team projects on selected marketing topics		N = 0,6E+0,4 I
Applications		Not the case		-		-
10.4 Minimum standard of performance						
N>5						

Course responsible S.I. Veronica Maier

16. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Automation and Computer Science
1.3	Department	Computer Science
1.4	Field of study	Computer Science and Information Technology
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Computer Science/ Engineer
1.7	Form of education	Full time
1.8	Subject code	49.2

17. Data about the subject

2.1	2.1 Subject name				Personal and professional development							
2.2	Subject area					Com	Computer Science and Information Technology					
2.3	Course respon	nsible	e/lec	turer		Dipl. Psy. Dorin Stanciu PhD, Lecturer						
						(ionu	ıt.stanciu@dp	pd.utcluj.ro)				
2.4	Teachers in cl	harge	e of a	application	S	Dipl. Psy. Dorin Stanciu PhD, Lecturer						
		_				(ionu	ıt.stanciu@dp	pd.utcluj.ro)				
2.5	Year of study	IV	2.6	Semester	7	2.7	Assessment	Colloquium	2.8	Subject	DC/OP	
							category					

18. Estimated total time

Sem	Subject name	Lectur	Apı	plica	tion	Lectur	App	licat	tion	Individual		
		е		S		е		S		study	TOTAL	Credit
		[hours / week.]		[hours / semester]			ster]					
			S	L	Р		S	L	Р			
7	Personal and professional development	2	•	•	-	28	•	-	-	48	76	3

3.1 Number of hours per week	2	3.2	of which, course	2	3.3	applications	-
3.4 Total hours in the teaching plan	28	3.5	of which, course	28	3.6	applications	-
Individual study							Hours
Manual, lecture material and notes, bibliography							16
Supplementary study in the library, online and in the field							14
Preparation for seminars/laboratory works	, homew	ork, re	eports, portfolios, e	essays	;		14
Tutoring							-
Exams and tests							4
Other activities						-	
		- 40					

3.7	Total hours of individual study	48
3.8	Total hours per semester	76
3.9	Number of credit points	3

19. Pre-requisites (where appropriate)

4.1	Curriculum	-
4.2	Competence	Baccalaureate level of instruction and general knowledge
		Beginner literacy with desktop applications, including Internet utilization

20. Requirements (where appropriate)

5.1	For the course	Auditorium or large lecture room. Audio-video installation for on-screen
		presentations (with room speakers). WiFi or cable Internet connectivity.
5.2	For the applications	Auditorium or large lecture room. Audio-video installation for on-screen
		presentations (with room speakers). WiFi or cable Internet connectivity.
		Writing board (classical or interactive) / Flip chart

6. Specific competences

competences	C5 - Design, lifecycle management, integration and integrity of hardware, software and communication systems (2 credits) C5.1 - Specifying the relevant criteria regarding the lifetime cycle, quality, security and computing system's interaction with the environment and human operator C5.2 - Using interdisciplinary knowledge for adapting an information system to application domain
Professional cor	requirements C5.3 - Using fundamental principles and methods for security, reliability and usability assurance of computing systems C5.4 - Adequate utilization of quality, safety and security standards in information processing C5.5 - Realization of a project including problem identification and analysis, design and development, while proving the understanding of the basic quality needs and requirements
Cross	TC1 - Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation (1 credit)

7. Discipline objectives (as results from the key competences gained)

	Scipilite objectives (as results from	are regional general,
7.1	General objective	To provide the course graduate with a set of competencies, skills and level of knowledge about him/herself which allows the formation of a competitive advantage and to provide to course graduate with a better understanding of his/her current academic status and curriculum
7.2	Specific objectives	To facilitate domain-specific learning and knowledge acquisition by providing a larger perspective on personal and professional development; To enhance personal determination and academic engagement as a basis for future competitiveness; To allow the course graduate to acquire specific tools and skills needed for personal and professional assessment, engagement, planning, organizing, expression, and networking.

8.1. L	ecture (syllabus)	Teaching methods	Notes
1	Key-concepts of personal and professional development. Self-concepts, qualities and virtues, self-awareness and self-knowledge (self-assessment versus external evaluations)	Interactive lectures: - Exposition	
2	Motivation and self-determination. Goals, objectives, interests, needs, desires, ideals, aspirations, expectations and incentives.	DiscourseDebating	
3	Learning and learning styles. Self-directed learning, adult learning and continuous learning (lifelong learning)	Case studiesProblem-	
4	Social modelling and key-persons/models. The basics of social learning and the significant others	solving - Heuristic	
5	Rationality, control, self-regulation and decision making. Processes, strategies and decision making tools	conversations - Role playing	
6	Critical thinking and scientific reasoning. Cognitive biases, logical fallacies and cognitive distortions		
7	Assertive communication, persuasion and negotiation		
8	Significant personal objectives: Qualities and virtues		
9	Significant personal and professional objectives: Health, safety, fulfilment, satisfaction and happiness		
10	Tools, means and methods for productivity enhancement: Strategic planning, Decision-making, Information management		
11	Tools, means and methods for productivity enhancement: Organization, scheduling, planning and budget management	1	
12	Tools, means and methods for productivity enhancement: CV building		

	(principles, alternatives, instruments)	
13	Tools, means and methods for productivity enhancement: Social networking, Professional networking (virtual dedicated networks and communities)	
14	Personal and professional development plans. Design and presentation	

Bibliography

Study materials: Course synthesis, Lecture presentations, additional multimedia presentations)

Aggarwal, R. S. (2000). A Modern Approach to Vernbal & Non Verbal Reasoning: S.Chand.

Andrews, K. R. (1971). The concept of corporate strategy: Dow Jones-Irwin.

Ariely, D. (2009). *Predictably Irrational: The Hidden Forces that Shape Our Decisions*: HarperCollins Publishers.

Aspinwall, L. G., & Staudinger, U. M. (2003). A Psychology of Human Strengths: Fundamental Questions and Future Directions for a Positive Psychology: American Psychological Association.

Bercovitch, J., Kremenyuk, V., & Zartman, I. W. (2008). The SAGE Handbook of Conflict Resolution: SAGE Publications.

Bishop, S. (2013). Develop Your Assertiveness: Kogan Page.

Bolt, M. (2004). Pursuing Human Strengths: A Positive Psychology Guide: Worth Publishers.

Cameron, N., & Bogin, B. (2012). Human Growth and Development. Academic Press.

Caputi, P., Viney, L. L., Walker, B. M., & Crittenden, N. (2011). Personal Construct Methodology: Wiley.

Cava, R. (2004). Dealing With Difficult People: How to Deal With Nasty Customers, Demanding Bosses and Annoying Co-Workers: Firefly Books, Limited.

Chamorro-Premuzic, T., & Furnham, A. (2005). Personality and Intellectual Competence: Taylor & Francis.

Clark, K. S., Murphy, M. M., & Banas, S. L. (2009). Handling Peer Pressure: Facts On File, Incorporated.

Deutsch, M., Coleman, P. T., & Marcus, E. C. (2011). *The Handbook of Conflict Resolution: Theory and Practice*: Wiley.

Dreher, J. C., & Tremblay, L. (2009). Handbook of Reward and Decision Making: Elsevier Science.

Dunne, G. (2003). Anger and Conflict Management: Personal Handbook: Personhood Press.

Fells, R. (2012). Effective Negotiation: From Research to Results: Cambridge University Press.

Freeley, A. J. (2012). Argumentation and Debate, 13rd ed: Wadsworth/Cengage Learning.

Gigerenzer, G. (2000). Adaptive Thinking: Rationality in the Real World: Oxford University Press, USA.

Gilbert, D. (2006). Stumbling on Happiness: Knopf Doubleday Publishing Group.

Gilovich, T. (2008). How We Know What Isn't So: Free Press.

Glickman, R. (2002). Optimal Thinking: How to Be Your Best Self: Wiley.

Hammond, J. S., Keeney, R. L., & Raiffa, H. (1999). Smart Choices: A Practical Guide to Making Better Decisions: Harvard Business School Press.

Haslam, N. (2007). Introduction to Personality and Intelligence: SAGE Publications.

Hunter, D. (2013). A Practical Guide to Critical Thinking: Deciding What to Do and Believe: Wiley.

Johnson, G., & Whittington, R. (2009). Fundamentals of Strategy: Pearson Education, Limited.

Kahneman, D. (2011). Thinking, Fast and Slow: Farrar, Straus and Giroux.

Kuhn, D. (2009). Education for Thinking: Harvard University Press.

Larson, C. U. (2009). Persuasion and Responsibility: Reception and Responsibility: Cengage Learning.

Lau, J. Y. F. (2011). An introduction to critical thinking and creativity: Think more, think better. Hoboken, N.J.: Wiley.

Lilley, R. (2013). Dealing with Difficult People: Kogan Page.

Lopez, S. J. (2008). Positive Psychology: Discovering human strengths: Praeger.

Macnamara, J. (1986). A Border Dispute: The Place of Logic in Psychology: A Bradford Book.

MTD Training. (2010). Dealing with Conflict and Complaints: MTD Training & Ventus Publishing ApS.

Mynatt, J. (2009). Encyclopedia of Management: Gale.

Narvaez, D., & Lapsley, D. K. (2009). *Personality, Identity, and Character: Explorations in Moral Psychology*: Cambridge University Press.

Oliver, D. (2010). How to Negotiate Effectively: Kogan Page.

Peterson, C., & Seligman, M. E. P. (2004). *Character Strengths and Virtues: A Handbook and Classification*: Oxford University Press, USA.

Raiffa, H., Richardson, J., & Metcalfe, D. (2002). *Negotiation Analysis: The Science and Art of Collaborative Decision Making*: Belknap Press of Harvard University Press.

Rechner, A. (2009). The in Crowd: Dealing with Peer Pressure: Compass Point Books.

Schick, T., & Vaughn, L. (2013). How to Think About Weird Things: Critical Thinking for a New Age: McGraw-Hill Education.

Seligman, M. E. (2011). *Learned Optimism: How to Change Your Mind and Your Life*: Knopf Doubleday Publishing Group.

Smith, J. C. (2011). Pseudoscience and Extraordinary Claims of the Paranormal: A Critical Thinker's Toolkit: Wiley.

Staley, C. C. (2007). Focus on college success. Boston, MA: Wadsworth Cengage Learning.

Stanciu, I. D. (2013). Raţionalitate şi control în autoreglarea învățării la studenţi. Modelare conceptuală şi intervenţii experimentale de validare. Cluj-Napoca: Presa Universitară Clujeană.

Stanovich, K. E. (2009). Decision making and rationality in the modern world: Oxford University Press.

Sternberg, R. J., & Zhang, L. (2001). *Perspectives on Thinking, Learning, and Cognitive Styles*: Taylor & Francis.

Tavris, C., & Aronson, E. (2008). *Mistakes Were Made (But Not by Me): Why We Justify Foolish Beliefs, Bad Decisions, and Hurtful Acts*: Houghton Mifflin Harcourt.

van den Brink-Budgen, R. (2000). *Critical Thinking for Students: Learn the Skills of Critical Assessment and Effective Argument*: How To Books.

Zhang, L., Sternberg, R. J., & Rayner, S. (2012). *Handbook of Intellectual Styles: Preferences in Cognition, Learning, and Thinking*: Springer Publishing Company.

8.2.	Applications (Seminars, Laboratory, Projects)	Teaching methods	Notes					
1	N/A							
Biblio	Bibliography							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

By completing this course, the course graduate is expected to have acquired a series of specific and general declarative and procedural knowledge, as well as have built a series of competencies, which, in their togetherness contribute to an increased capacity to find employment, communicate professionally and informally, collaborate and work closely with other professionals and non-professional, and an increased ability to promote and capitalize upon personal and professional traits and activities.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2	Assessment	10.	Weight in the final
			methods	3	grade
Course	Standardized written test with		Written test		60%
	multiple choice questions.		Duration: 1 hr.		
Applications	Collaborative and individual		Individual portfolio		40%
	semester projects.				
	Collaborative and individual				
	homework.				
	Assessment criteria include:				
	accuracy/precision,				
	completeness, fluency, and				
	relevance				

10.4 Minimum standard of performance

The total weighed score exceeds the equivalent of 5/10 of the final grade. Each assessment exceeds 50% of the allotted grading.

Course responsible Lecturer Dipl. Psy. Dorin Stanciu PhD